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Abstract 
 
Machine intelligence marks the ultimate dream of making machines' intelligence comparable to human 
beings. While recent progress in Large Language Models (LLMs) show substantial specific skills for a 
wide array of downstream tasks, they more or less fall shorts in general intelligence. Following 
correlation between intelligence and system 2 reasoning (slow thinking), in this paper, we aim to 
answering a worthwhile research question: could machine intelligence such as LLMs be evolved to 
acquire reasoning ability (not specific skill) just like our human beings? To this end, we propose 
evolutionary reasoning optimization (ERO) framework which performs survival of the fittest over a 
population of LLMs to search for individual with strong reasoning ability. Given a reasoning task, ERO 
first initializes multiple LLMs as a population, after which an evolutionary strategy evolves the 
population to maximize quantified reasoning score of the best individual. Based on experiments on 
representative test suites, we claim two surprising empirical discoveries: i) the latest LLMs such as GPT-
5 still show limited system 2 reasoning ability; ii) with simple evolution-loop of ERO, a relatively weak 
model (Qwen-7B) could be enhanced to emerge powerful reasoning ability. Our project can be accessed 
at https://github.com/MetaEvo/ERO for reproduction needs. 
 
Keywords: Large Language Model; Logical Reasoning; System 2 Reasoning; Neuroevolution; 
Evolutionary Computation; Black-Box Optimization 

 
 

1. Introduction 
 

Machine intelligence (often interchangeably used with AI) has experienced ups and downs within a long 
river of history [1][2][3]. Since the initial proposal of AI at 1950s [4], an evolution path has been 
observed: from basic theories [5][6] to concrete architectures [7][8][9][10][11] and algorithms 
[12][13][14][15]. Today, the application of AI has spread to every corner of the world. Domains such as 
image processing [16], nature language processing [17] and scientific discovery [18] benefit from its 
learning power and corresponding human-competitive performance. 

https://insspress.org/
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https://github.com/MetaEvo/ERO


Journal of Intelligent and Sustainable Systems 2025, 1(1) 
             

2 
 

However, we should not overlook the dark side of advanced machine intelligence (i.e., LLMs) 
simply due to its twinkling academic and engineering achievements [19][20][21]. In other words, we 
have to realize that LLMs, though pre-trained with massive human knowledge prior, may still operate  

 

 
Figure 1: A comparison between the evolution paths  

of human beings and machine intelligence. 
 

at the pattern recognition (fast thinking, System 1 reasoning) level, and hence lacks long-chain, deep, 
logical reasoning ability (slow thinking, System 2 reasoning), as testified in recent competitions1. 

As illustrated in Figure 1, such System 2 reasoning inability potentially roots from the essential 
difference between the evolution of machine intelligence and that of our human beings [22][23]. For 
human beings, we are continually involved in evolutionary process under open-ended environmental 
selection pressure, which follows the survival of the fittest principle proposed by Darwin [24]. The 
''open-ended'' term is used to reference extreme generalization scenario where environmental uncertainty 
is naturally unknown by human beings [25]. In contrast, almost all machine intelligence instances are 
trained for specific application scopes explicitly restricted by their developers (human beings). The 
feedback or learning signal in their learning loops may inherently restrict them from general intelligence 
with logic reasoning [26]. To make this point clearer, we borrow the valuable perspective from  
developmental psychology [27], which holds the position that: human-level intelligence shows 
generalization and open-endedness and is capable of expanding far beyond its evolution path. More 
importantly, human is born with innate and evolution-driven knowledge priors such as elementary 
physics, goal-directness, arithmetic and geometry. These priors enable us to acquire certain skills 
efficiently [28], by System 2 slow thinking. 

The gap between existing LLMs and general System 2 reasoning ability motivates us to explore 
possible solutions. An intuitive yet under-explored thought would be: Given that existing advanced 
LLMs have absorbed massive knowledge priors through pre-training with internet-scale corpus, can we 
further evolve them (e.g., Neuroevolution [29]) to attain System 2 reasoning ability? To answer this 
research question empirically, we in this paper propose Evolutionary Reasoning Optimization (ERO) 
framework that enables human-like evolution process for LLMs to adapt themselves in complex tasks 
that require System 2 reasoning. In our framework, the neural network parameters of a LLM are regarded 
as a holistic genotype space. At the beginning, given a complex reasoning task, a population of LLMs 
are randomly born via sampling from the genotype space. Then a (𝜇𝜇 +  𝜆𝜆) Evolutionary Strategy (ES) 
[30][31] is applied to guide the LLM population toward more powerful System 2 reasoning performance 
on the target task. The evolution rule in our framework is purely objective-oriented: the LLM individual 
with higher reasoning ability survives and contributes to the reproduction of offspring, which is closely 
analogous to evolution of human beings. We provide an intuitive illustration in Figure 4 to showcase 
how ERO evolves a weak Qwen-7B model to surpass powerful GPT-5 model on reasoning tasks. We 
next provide a brief review of related works in Sec. 2, elaborate the technical details of ERO in Sec. 3 
and discuss empirical results in Sec. 4 respectively. 

 
 

1 https://arcprize.org/leaderboard 

https://arcprize.org/leaderboard
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2. Related Works 
 
2.1. Reasoning in LLMs 

Reasoning ability is regarded as a key for achieving human-level machine intelligence [32]. In particular, 
it relies on logical reasoning and systematic step-by-step thinking to ensure solving effectiveness on 
complex tasks, which is typically termed as System 2 reasoning. Compared to System 1 reasoning, which 
features fast, pattern recognition-based decision mapping, System 2 reasoning presents deliberate slow 
thinking, resulting in concise and rational problem solving via mitigating cognitive biases in System 1 
reasoning. While the swift development of LLMs (e.g., DeepSeek-v3 [33], GPT-5 [34]) shows 
promising results on understanding and performing human-competitive tasks, they may still lack 
matched cognitive abilities with human beings in complex reasoning tasks [35].  

To improve the capability of reasoning LLMs, initial exploration includes Chain-of-Thought 
(CoT) [36][37] and Tree-of-Thought (ToT) [38], which focus on preparing high-quality, step-by-step 
and fine-grained supervision data through decomposing the complex reasoning process into chain or tree 
structure. Given the data scaling difficulty and single-pass reasoning pattern in CoT and ToT, subsequent 
works further apply Monte Carlo Tree Search (MCTS) to allow LLMs revisit, reflect and refine their 
reasoning paths dynamically [39][40][41], or self-improvement strategies [42] that bootstrap training 
data from either iterative self-reflection [43] or rule-based reasoning path augmentation [44]. Beside 
these data curation designs, the training paradigm itself also plays crucial role in attaining robust 
reasoning LLMs. Common practice in up-to-date literature leans to reinforcement fine-tuning (RFT) 
with output reward modeling (ORM) [45] or process reward modeling (ORM) [46]. The former 
emphasizes scoring for final answer correctness and the latter pays efforts on fine-grained step-by-step 
reward labeling. Test time training (TTT) [47] is also adopted as effective post-training strategy to 
mitigate reasoning hallucination. For further reading, we suggest these surveys [32][48][49]. 

 
2.2. Reasoning LLMs Benchmarks 

While recent advance of LLMs demonstrates that, with large-scale pre-training on massive and diverse 
corpus, these novel machine intelligence models rival or even surpass human's performance at specific 
testbeds [50][51][52], more evidences argue that they lack compositional System 2 reasoning ability in 
solving complex tasks as general intelligence [53]. To this end, a large body of related benchmarks have 
been curated to provide objective and challenging reasoning tasks for evaluating reasoning LLMs. 
According to their concrete task types, we could generally document them as: 1) Olympic-level 
mathematical reasoning benchmarks [54][55]; 2) Real world programming challenges summarized from 
GitHub [56]; 3) Scientific discovery process [57] in physics, chemistry, etc.; 4) Agentic automation 
workflow tests, e.g., constructing web application from zero [58]; 5) Human-level cognitive ability tests 
[28][35] that analog IQ examination. 

In this paper, we focus on the last benchmark type, of which a representative benchmark is 
Abstraction and Reasoning Corpus (ARC) benchmark [28]. As illustrated in Figure 2, the testing task 
instance in ARC benchmark includes multiple few-shot examples and a test case for machine 
intelligence to solve, which stays close in format of psychometric intelligence test [59]. To figure out 
each puzzle, an intelligence must coherently enable its innate prior on object persistence and contact 
influence, goal-directedness, numbers and counting, etc., just like our human beings. According to the 
latest results, even the most powerful reasoning-reinforced LLMs (GPT 5 and Gemini 3) could only 
achieve scores no more than 55% on ARC-AGI-2 benchmark[35], with an evident reasoning gap against 
human panel (70%, according to [73]). The ARC benchmarks provide us a desirable testbed. 

2.3. Evolutionary LLMs Enhancement 
Evolutionary Algorithms (EAs) [60] are meta-heuristics that follow evolutionary principle in nature to 
optimize given problems through reproduction and selective pressure. Given EAs' high-level alignment 
with the evolution process of human beings and robust global optimization capability, they have been 
validated as powerful optimization techniques for many applications [61], except LLMs. Recently, 
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initial attempts have been made to explore the possibility of leveraging EAs to enhance LLMs' 
performances. While limited, these efforts have seen delightful effects such as prompt optimization 
through textual evolution [62], program evolution through LLM-level genetic programming [21][63], 
novel ability composition through model merge recipes [64][65], incremental and dynamic prompting 
through evolutionary context engineering [66]. However, to the best our knowledge, none of prior works 
focus on the core vision of LLMs: reasoning like human beings. This highlights the motivation of our 
paper. 

 

 
Figure 2: A reasoning task example in ARC benchmark. 

 
 

Table 1: Pass@1 scores of LLMs baselines across 15 ARC tasks, with their task properties 
attached at the top of the table. 

 

 
 
 

3. Evolutionary Reasoning Optimization 
 

In this section, we elaborate both the general picture and specific designs of our ERO framework to 
clarify how we address reasoning enhancement for LLMs via EAs perspective. Generally speaking, ERO 
operates as a neuroevolution [29] approach, which is under the umbrella of evolutionary strategy (ES) 
[30][31] framework. We present the overall workflow of ERO in Alg. 1, where starting from an existing 
LLM, an iterative searching process is deployed to evolve the parameters of the LLM toward high 
reasoning performance on the given reasoning task. However, we must note that it is neither practical 
nor efficient to run ERO in a standard ES procedure. We next detail the key challenges and 
corresponding tailored designs in ERO. 

Sampling Strategy: In ERO, we have to first determine sampling strategy (i.e., mean and 
covariance parameters) to serve as initialization module and hence kick out subsequent evolution 
process. For the mean parameter 𝜇𝜇, we could simply set it as the weights of the LLM (denoted as 𝜃𝜃0). 
The real challenge is how to determine covariance parameter Σ. Although ES has been previously used 
in evolving relatively smaller neural networks [29][67], where the value ranges of parameters are 
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controllable and hence we could set identical entries for Σ matrix, it is absolutely not the case in LLMs. 
This is backed up by our preliminary experiment, where we conducted a statistical summary on different 
LLMs and found out that the value ranges of LLMs' parameters vary a lot. However, we also found out 
that the value ranges of layer-wise parameters are more stable. Based on such observation, we determine 
the entries of variance matrix Σ by the principle below: 

Σ[𝑘𝑘, 𝑘𝑘] = 𝜖𝜖 ×
1

|𝐿𝐿𝑘𝑘|�𝜃𝜃(0)[𝐿𝐿𝑘𝑘][𝑛𝑛]
|𝐿𝐿𝑘𝑘|

𝑛𝑛=1

                                                                                                (1) 

where 𝑘𝑘 denotes 𝑘𝑘-th neural network parameters of the selected LLM, 𝐿𝐿𝑘𝑘  is the network layer 
where 𝑘𝑘 -th parameter locate at, 𝜖𝜖  is value between 0~1 to control the variance strength, [∙] is the 
indexing operation. We set Σ once leave it fixed until the end. A population of LLMs with the same 
architecture with 𝜃𝜃(0) are then sampled by the constructed gaussian distribution (line 4 in Alg. 1). 

 

 
 

Figure 3: System prompt and User prompt we used across all baselines. 
 
Scoring Function: Given a population of 𝜆𝜆 sampled LLMs at 𝑔𝑔-th generation: {𝜃𝜃(𝑔𝑔),𝑖𝑖}𝑖𝑖=1𝜆𝜆 , the 

underlying ES process in ERO needs proper evaluation metric (scoring function) to measure the 
reasoning performances of these LLM individuals on the given task 𝜏𝜏. A general form of such scoring 
function can be formulated as 𝕊𝕊(𝜃𝜃|𝜏𝜏), where 𝜃𝜃 denotes a tested LLM. We would like to clarify that our 
ERO does not restrict concrete implementation of the scoring function, instead, it can be quite flexible 
to tailor appropriate scoring schemes for different reasoning tasks. One can surely use generic schemes 
such as process reward model [46] that regards any reasoning task as standard reasoning chain and 
credits those matched reasoning steps. On the other hand, one can also customize special 𝕊𝕊 function for 
specific task. Since our ERO is a purely objective-oriented optimization system, all it need is a scalar 
objective to minimize or maximize. We take the testbed we select for this paper (ARC benchmark) as 
an example. In ARC, the answer of a reasoning task instance is typically a 1-D or 2-D array indicating 
the colors of grids. By representing them as strings, one can simply compute the score as: 

 

𝕊𝕊(𝜃𝜃|𝜏𝜏) = 1 −
𝑙𝑙𝑙𝑙𝑙𝑙 �𝐴̂𝐴(𝜏𝜏|𝜃𝜃),𝐴𝐴(𝜏𝜏)�

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝐴𝐴(𝜏𝜏), 𝐴̂𝐴(𝜏𝜏|𝜃𝜃)�
                                                                                            (2) 

 
where 𝑙𝑙𝑙𝑙𝑙𝑙(∙,∙) is the Levenshtein distance [68] between two strings, 𝐴𝐴 and 𝐴̂𝐴 is the ground truth 

and predicted answer respectively. In this paper, ERO aims at maximizing the LLM's performance on 
ARC tasks through maximizing corresponding scoring function values. 

Island Architecture: Given the massive searching space of LLM's neural network parameters, 
island-based population architecture could be a useful strategy to enhance the searching diversity of 
underlying ES process, which may further improve the final optimization performance [69]. Besides, 
since LLMs are inherently aligned with multi-card computational resources and distributed 
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computational methods, island architecture is a coherent choice in LLM-based evolution frameworks 
[70][71]. To this end, our ERO instantiates multiple LLM populations as independent islands, which 
sample and evaluate LLM individuals (lines 4~5 of Alg. 1) in parallel. The communication (fitness 
aggregation) across different islands occurs when we have to aggregate elite LLM individuals and 
accordingly update the mean and variance parameters of ES process (lines 6~7 of Alg. 1). Unlike vanilla 
ES, the 𝜇𝜇 elite LLM individuals are selected as the ⌊ 𝜇𝜇

𝑍𝑍
 ⌋ best individuals per island, where 𝑍𝑍 is the 

number of islands deployed. Once the elite individuals are voted out, we update the mean parameters 
used for next-generation sampling by averaged aggregation. Note that we keep a fixed variance matrix 
Σ to maintain continuous exploration strength along the evolution process.  

Ray Acceleration: As we mentioned above, the island architecture allows us to incorporate 
advanced distributed ML techniques to reduce the running complexity of LLM-based evolution 
frameworks. This is particularly useful in our ERO, since the scoring evaluation is actually time-
consuming, where each LLM individual is fed with reasoning questions and prompted to output 
reasoning steps and answers. We hence introduce Ray 2 , a large-scale ML-enabled computational 
framework, to distribute each island in ERO onto a separate GPU of a multi-GPU computer/cluster. The 
Ray parallelism not only enables distributed island-based evolution, but also further facilitates fine-
grained parallel evaluation within each island, reducing the running time of ERO from days to hours. In 
practice, the concrete parallel degree varies due to different hardware conditions. 

 
Algorithm 1: Evolutionary Reasoning Optimization 
Input: LLM 𝜃𝜃0; reasoning task 𝜏𝜏; population size 𝜆𝜆; elite group size 𝜇𝜇; optimization budget 𝐺𝐺. 
Output: best LLM individual 𝜃𝜃∗ found ever. 

1: Attain layer-wise covariance Σ from 𝜃𝜃0 
2: Let 𝑔𝑔 = 1 
3: while 𝑔𝑔 < 𝐺𝐺 do 
4:       Sample 𝜆𝜆 LLMs: {𝜃𝜃(𝑔𝑔),𝑖𝑖}𝑖𝑖=1𝜆𝜆 ~Ν(𝜃𝜃(𝑔𝑔−1),Σ) 
5:       Evaluate their reasoning scores: �𝕊𝕊�𝜃𝜃(𝑔𝑔),𝑖𝑖�𝜏𝜏��𝑖𝑖=1

𝜆𝜆
 

6:       Select 𝜇𝜇 top-scoring LLMs: {𝜃𝜃�(𝑔𝑔),𝑗𝑗}𝑗𝑗=1
𝜇𝜇  

7:       Update 𝜃𝜃(𝑔𝑔) = 1
𝜇𝜇
∑ 𝜃𝜃�(𝑔𝑔),𝑗𝑗𝜇𝜇
𝑗𝑗=1   

8:       𝑔𝑔 = 𝑔𝑔 + 1 
9: end while 

10: return the LLM individual with the best score 
 
Cache Optimization: One may question about how could a large population of LLMs be loaded 

within a single 4-GPU or 8-GPU computer/cluster, since a single LLM may require at least 10~20 GB 
GPU memory. The solution we propose is to subtly and flexibly leverage limited cache memory. In 
specific, we only maintain necessary LLM information in an on-the-fly fashion for each island (i.e., each 
GPU node). The necessary LLM information includes the mean parameters at current optimization 
generation (𝜃𝜃(𝑔𝑔)), the layer-wise variance matrix Σ, the elite pool used for maintaining ⌊ 𝜇𝜇

𝑍𝑍
 ⌋ elite LLM 

individuals. The elite pool is dynamically updated when a newly sampled LLM individual gets better 
reasoning score than those in the pool, where the older elite is replaced by the newly sampled one. With 
such cache memory optimization, ERO could evolve hundreds of LLM individuals simultaneously on 
GPU memory-limited platform. 

 
 
 

 
2 https://github.com/ray-project/ray 

https://github.com/ray-project/ray
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4. Empirical Validation and Discussion 
 
4.1. Experimental Setup 

We list detailed settings of each part in ERO here, which could be generally divided into three categories: 
ERO's Settings: We select Qwen-7B3 as the initial LLM 𝜃𝜃(0) to be evolved. The reason behind 

such selection is that this relatively poor-reasoning model could facilitate validation on effectiveness of 
our ERO. For the hyper-parameters of the underlying island-based ES, we set its population size 𝜆𝜆 =
1000 which are evenly distributed to 𝑍𝑍 = 4 islands, elite pool size 𝜇𝜇 = 4 and the optimization budget 
𝐺𝐺 = 12 generations. All experiments are run on a high-performance instance of a GPU cluster, which 
comprises an Intel Xeon 8558P CPU, 128 GB RAM and 4×64 GB virtual GPU nodes based on Nvidia 
H20 GPU.  

Testbed: As a preliminary study and due to limited computational resources, in this paper, we 
have randomly sampled 15 reasoning task instances from hundreds of instances in ARC-1 benchmark 
[28]. We mark these 15 tested instances as 𝑇𝑇1~𝑇𝑇15. We present at upper half of Table 1 the fine-grained 
properties of these instances in terms of their correspondence to innate cognitive abilities of human 
beings. Refer to our project for their correspondence to ARC-1 indices and concrete task descriptions 
and visualizations. 

Baselines: We include 6 baselines in the comparison experiments: 1) Ours: the Qwen-7B model 
evolved by our ERO on the given ARC-1 reasoning task instance; 2) Qwen-7B: the same Qwen-7B pre-
trained checkpoint, without ERO's evolution; 3) Qwen-32B4: a much larger Qwen model with stronger 
general task solving ability than the 7B model; 4) GPT-4o-mini5, 5) GPT-4o6 and 6) GPT-57, which are 
three GPT-series models enhanced with multi-modal processing ability and chain-based reasoning 
capability. For Ours and Qwen-7B, we deploy their checkpoints at our local GPU server. For the rest of 
baselines, we call their corresponding APIs. Their key hyper-parameters such as temperature and top-p 
sampling rate follow default values. For GPT-5, we use its default reasoning efforts level (''minimal''). 

4.2. Major Results 
For all of the selected baselines, we use a pre-designed standard prompt template to ensure fair 

evaluation, as illustrated in Figure 3. By using this standard template, we could test selected baselines 
on the 15 reasoning tasks sampled from ARC-1 benchmark, and then compute their per-instance pass@1 
reasoning scores (as we defined in Eq. (2)). We next present these results and corresponding discussions.  

 

 
 

Figure 4: Evolution curve of ERO on ARC benchmark. 
 

 
3 https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct 
4 https://dashscope.aliyuncs.com/compatible-mode/v1 
5 https://platform.openai.com/docs/models/gpt-4o-mini 
6 https://platform.openai.com/docs/models/gpt-4o 
7 https://platform.openai.com/docs/models/gpt-5 

https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
https://dashscope.aliyuncs.com/compatible-mode/v1
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-5
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Evolutionary Convergence: We first demonstrate the effectiveness of our ERO by illustrating its 
evolutionary convergence curve as shown in Figure 4, where each scalar point in the red line is the 
average reasoning score of ERO across 15 tested reasoning tasks. We also attach the average scores of 
three advanced GPT-series baselines with dashed lines. The results in Figure 4 demonstrate that while a 
simple pre-trained Qwen-7B model underperforms the GPT models due to its limited capacity and pre-
training data scale, it could be evolved by our ERO to surpass these advanced baselines on reasoning 
tasks. This finding may also indicate the knowledge prior redundancy of existing LLMs. We may not 
need continually scale both the model capacity and training data size to enable LLM's human-level 
reasoning ability. On the contrary, such ability may conceal itself within the LLM's parameters, and 
could be adapted to specific reasoning task through evolution. The results above at least demonstrate 
potential of evolutionary algorithms on LLM's post-tuning. 

 

 
 

Figure 5: Showcases on the effectiveness our ERO  
for boosting the understanding and reasoning ability of LLMs. 

 
Performance Comparison: We further present the per-instance performance comparison 

between our ERO and other baselines in the lower half of Table 1. Where the best and second-best are 
labeled in bold and underlined respectively. We also specifically mark the results of our ERO and Qwen-
7B in light blue to highlight the relative improvement. From the results, we can observe that: 1) ERO 
could significantly improve the reasoning capability of Qwen-7B through 12 evolution generations, 
which cross-validates that intelligence (whether organic or machine-based) obeys evolution principle 
(survival-of-the-fittest); 2) With our ERO, a relatively weak Qwen-7B LLM could be evolved to perform 
competitively with one of the most advanced LLMs: GPT-5. On 8 of the 15 tested task instances, ERO 
presents significant performance advantage; 3) The reasoning capability of LLMs may not root from 
existing scaling law in training these LLMs. Direct evidence lies in the comparison between Qwen-7B 
and Qwen-32B models. On 8 of the 15 reasoning tasks, a smaller Qwen-7B model presents better logical 
reasoning and understanding level than its ''improved version''. This might indicate that we should pay 
more attention on multi-dimensional solutions for reasoning enhancement of LLMs, not only the scale 
of LLM pre-training. 

We also showcase in Figure 5 three task instances (T6, T8 and T11) where our ERO successfully 
evolves the initial Qwen-7B model from completely wrong reasoning to crystal correct answer. As their 
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descriptions and visualizations presented in the figure, these ARC-1 reasoning tasks challenge the innate 
abilities of intelligence of human beings, let alone the LLMs never being trained on such tasks. 

4.3. An Important Future Work 
In this paper, we mainly focus on the evolution of LLM's reasoning capability under a given 

reasoning task. While the results mentioned in previous sections have clearly demonstrated that 
introducing evolutionary perspective into LLM's intelligence enhancement could result in surprising and 
promising effects, we have to note that the evolution of human beings may not be such simple, i.e., in 
an adaption-per-task fashion. On the contrary, the subtle evolution of human beings emerges in the 
remix of complex environmental dynamics and concurrent multitasking. This outlines an important and 
promising future work of our ERO, which is the meta-evolution across reasoning task distribution: 
 

𝕊𝕊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝔼𝔼𝜏𝜏~Ω[𝕊𝕊(𝜃𝜃|𝜏𝜏)] 
 
which is the expectation of reasoning scores over a reasoning task distribution Ω. As computing 

power and evolution paradigm (e.g., [72]) continue to iterate and update, we may witness in the near 
future the emergence of machine intelligence species with diverse behavior and characteristics (e.g., 
''The Matrix'' movie), purely by evolution. 

 

5. Conclusion 
 

The position of this paper bridges the evolutionary computation community and LLMs community by 
proposing the ERO framework, which iteratively evolves LLM's parameters to maximize its System 2 
reasoning scores on given reasoning tasks. At the core of ERO, we introduce island architecture-based 
evolutionary strategy to ensure searching diversity and quality, which attains reasoning performance 
gain effectively. Combined with specially designed cache optimization and ray acceleration 
mechanisms, ERO is capable of evolving a large population of LLMs on relatively limited computational 
resources. We validate ERO's potential by comparing it to existing representative LLMs on ARC 
benchmark. The promising results not only demonstrate evolution of LLMs is useful for intelligence 
enhancement, but may also reveal implicit connections between organic human beings and 
connectionism-based machine intelligence. We hope this work could appeal for more research efforts 
on evolutionary machine intelligence, and more importantly, exploration on more possibilities. 
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