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Abstract 
Accurate prediction of vehicle travel times is crucial for enhancing intelligent transportation systems, 
optimizing routing solutions, improving ride-sharing services, and managing traffic effectively. There 
are various methods available for predicting vehicle travel times between two locations, including both 
model-based and data-driven approaches. Traditional models often fall short because they assume 
Euclidean distance when predicting travel times between points. In this study, we focus on predicting 
vehicle travel times for road segments and entire routes using detailed trajectory data that includes 
latitude, longitude, time of day, time of week, driver habits, and driver ID. Each trajectory consists of a 
sequence of GPS points that track a vehicle's movements over time. By defining a road segment as the 
route between three consecutive GPS points, we can break down the trajectory into smaller segments, 
enabling more accurate travel time estimates. Given the complexity of travel time prediction, which is 
influenced by traffic flow conditions at different times and locations, we propose a deep learning 
algorithm. This algorithm utilizes advanced techniques, including Convolutional Neural Networks 
(CNNs), Long Short-Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs). 
Our approach demonstrates significant improvements over existing methods. Using the Mean Absolute 
Percent Error (MAPE) metric, we compared our model with established ones, employing large-scale 
Chengdu taxi datasets. Our results indicate a 2.9% improvement in travel time prediction accuracy, 
highlighting our model's potential to surpass current solutions and paving the way for future research in 
travel time estimation. 
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1. Introduction  
 

Accurate travel times serve as a vital component in enhancing transportation systems, leading to 
numerous positive outcomes. By optimizing operational costs, sustainability, service quality, and 
customer satisfaction, accurate travel times also improve emergency response times and inform 
infrastructure investment decisions to enable the efficient movement of people and goods in logistics. 
When transportation planners and stakeholders can accurately predict vehicle travel times, they are 
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empowered to make proactive, informed decisions about selecting routes and modes that are flexible, 
cost-effective, sustainable, and competitive. This adaptability enables a quicker response to delays, 
changing conditions, traffic congestion, and overall network performance, ultimately creating a more 
predictable experience for everyone in the system [1, 2]. Such an approach significantly reduces anxiety 
and frustration by providing drivers with real-time alternative routes, which enhances cooperation and 
satisfaction throughout the logistics system. 

Enhancing travel time predictions offers a powerful opportunity to boost sustainability efforts 
significantly. By optimizing routing for personal, business, and public transportation, we can effectively 
reduce congestion and fuel consumption, thereby lowering carbon emissions and increasing efficiency. 
This improvement makes public transportation a more attractive option, encouraging more individuals 
to choose it over private vehicles, thereby significantly reducing overall traffic levels. Moreover, 
accurate travel time predictions pave the way for better urban planning and resource management, 
contributing to the development of sustainable transportation systems across cities [3, 4]. In business 
logistics, more accurate travel time forecasts can improve operational efficiency. By enabling thorough 
planning, reducing costs, and enhancing reliability, businesses can optimize inventory management and 
allocate resources more effectively at facilities. This not only reduces operational costs but also enhances 
customer service, creating a win-win situation for both companies and their clients [5, 6]. 

When considering travel time from a route perspective, it encompasses the total duration needed 
to complete a specific route, including any waiting times between segments, from the starting point to 
the final destination. From a network standpoint, travel time impacts overall efficiency and planning. 
Optimizing these aspects can enhance travel experiences, improve logistics, and other perspectives. The 
time required to navigate particular road segments (or arcs) varies with departure time and current traffic 
conditions. This variability in travel time profoundly affects the identification of the shortest path 
between two locations in a complex, dynamic roadway system. Travel time is systematically calculated 
by aggregating the duration of each segment along the route, with each segment’s duration being 
influenced by factors such as speed, distance, and time-dependent conditions like traffic patterns and 
weather. Importantly, while measuring travel time is essential for road networks, it is equally crucial for 
other transportation modes, including railways, to ensure a comprehensive understanding of logistics 
efficiency [7, 8]. 

Navigation applications like Google Maps, Waze, Apple Maps, and HERE WeGo play a vital role 
in enhancing travel experiences by providing accurate travel time estimates. These estimates are 
fundamental to Intelligent Transportation Systems (ITS), Advanced Traveler Information Systems 
(ATIS), Advanced Driver Assistance Systems (ADAS), and Advanced Traffic Management Systems 
(ATMS). By using advanced route guidance, these systems can predict real-time travel times for various 
road segments, considering current conditions, congestion, and other influencing factors [7, 9-12]. The 
value of travel time estimation is evident in its precision and the significant benefits it offers. Accurate 
estimates help inform users of changing road conditions, optimize their trips, and reduce pollutant 
emissions. Travel time predictions are categorized into three key horizons: short-term, medium-term, 
and long-term. Short-term predictions, which focus on a timeframe of minutes to an hour, are beneficial 
for real-time navigation and for avoiding immediate congestion. Medium-term predictions, covering 
hours to a day, support daily planning. Long-term predictions, spanning days to weeks or even months, 
are valuable for strategic initiatives such as infrastructure development and freight scheduling. By 
leveraging a variety of features and advanced modeling techniques, including deep learning and other 
data-driven approaches, transportation systems can continuously improve the accuracy of their 
predictions across all time horizons.  

In recent years, trajectory data in transportation, particularly in urban environments, has expanded 
significantly due to the ongoing development and widespread adoption of location-aware sensing 
systems such as GPS, Wi-Fi, RFID, and Bluetooth [11, 12]. These technologies provide valuable 
geographic coordinates or relative positions of moving elements in transportation systems, facilitating a 
variety of context-specific services. Examples include location-based alerts, business asset tracking, and 
participatory sensing for environmental monitoring. This wealth of information empowers transportation 
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planners to make informed, data-driven decisions. By predicting travel times, traffic flows, and other 
critical factors within transportation networks, planners can enhance overall system efficiency. 
However, despite these advancements, challenges remain, including rising air pollution, increasing 
transportation costs, greater fuel consumption, higher accident rates, and deteriorating public health. 
This context highlights the importance of continued investigation into traffic and road data. A key focus 
of this effort is travel time prediction, which is essential for addressing sustainability issues, detecting 
accidents, managing traffic and congestion, and improving dynamic navigation. Moreover, travel time 
estimation serves as a foundational input for various associated analyses. 

While predicting travel time is clearly significant, it poses a complex challenge for transportation 
planners and other stakeholders, given the numerous dynamic factors at play. These factors include both 
discrete and continuous speed functions, road conditions, traffic congestion (volume and speed), time of 
day, day of the week, weather conditions, special events, road network characteristics (type and layout), 
route preferences, and driver behavior. By identifying and addressing these variables, we can enhance 
travel-time prediction efforts and contribute to more sustainable, efficient transportation systems. 

Discrete and continuous speed functions are two distinct approaches used by the transportation 
systems analyst for time-dependent travel time estimation. Discrete speed functions divide time into 
predefined intervals and assume a constant speed within each interval. This simplifies the calculations 
but may overlook the finer variations in speed. On the other hand, continuous speed functions consider 
speed as a continuous variable, allowing for more precise estimations by capturing the dynamic nature 
of speed changes over time. Trigonometric functions or other continuous functions are commonly 
employed to model these variations accurately. 

The following example can illustrate the time-dependent travel time calculation.  Let’s consider a 
delivery vehicle traveling from Node A to Node B, a distance of 50 kilometers (kms). Using a discrete 
speed function with two time intervals due to the rush hour, the vehicle maintains a speed of 60 km/h 
for the first 30 minutes and then reduces to 40 km/h. The estimated travel time would be 60 minutes, 
which is the first 30 minutes plus the time to travel the remain distance of 20 km.  

When considering time-dependent travel time in the transportation problem, using discrete or 
continuous speed levels to estimate travel times has limitations. Using discrete speed levels, such as 
predefined speed categories (e.g., low, medium, high), may not capture the nuanced variations in travel 
times. Traffic conditions can change rapidly, and discrete speed levels may not accurately reflect the 
speeds experienced at different times of day or on specific road segments. 

On the other hand, using continuous speed levels, where speed is treated as a variable, provides 
greater flexibility than discrete levels. While continuous speed models offer this advantage, they pose 
unique challenges for accurately estimating travel times. The complexity arises from various factors, 
including time of day, traffic congestion, and road conditions, which all influence travel time variations. 
To effectively utilize continuous speed models, it’s essential to account for these multiple variables, 
which adds a layer of complexity to the estimation process. Additionally, it's essential to recognize that 
these models may face difficulties in generalizing across different scenarios or in capturing non-linear 
variations in speed accurately. They also necessitate specific assumptions and parameter choices, which 
can affect their reliability. Aspects such as traffic lights, turns, and speed limits significantly impact 
travel times and warrant consideration for more precise estimations. 

While traditional methods, including statistical approaches and conventional machine learning 
techniques (such as historical averages, time series models, and regression analysis), provide 
foundational time estimates, they often lack the detail and accuracy required in complex real-world 
scenarios with dynamic environments. In this respect, with advancements in artificial intelligence, 
machine learning, computational techniques, and big data technology, deep neural networks are 
emerging as powerful tools. They offer researchers and practitioners innovative solutions for accurately 
predicting travel times, paving the way for more reliable and comprehensive travel time assessments[10]. 

Given the complexities of predicting travel times under varying spatial and temporal traffic 
conditions, this paper proposes a deep learning algorithm to enhance travel time prediction. Our 
objective is to achieve more accurate predictions through the innovative integration of Temporal 
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Convolutional Networks (TCN) and Long Short-Term Memory (LSTM) architectures, which effectively 
capture both short- and long-term temporal patterns. This research considers external factors such as 
time of day, time of week, and driver behavior, which can significantly influence travel time. The deep 
learning algorithms analyse the dataset to estimate travel time by learning complex patterns from large, 
diverse datasets, which enables more accurate predictions than traditional methods. To further improve 
our predictions, we have implemented an attention mechanism and a multitask learning module, 
allowing us to analyze travel times for individual road segments as well as for entire routes 
simultaneously. Moreover, we aim to validate our proposed method by comparing its accuracy, as 
indicated by the mean absolute percent error (MAPE), with existing models that utilize large-scale real-
world taxi datasets from Chengdu found in the literature. This approach not only highlights the 
effectiveness of our algorithm but also contributes valuable insights to the field of travel time prediction. 
Attention mechanisms in deep learning play a crucial role in enhancing models' ability to capture 
complex information and focus on the most relevant elements of the input data. This capability 
significantly improves accuracy, particularly for long sequences [5, 13]. When applied to travel time 
prediction, these mechanisms allow the model to emphasize certain historical data points (like speed, 
time of day, or road conditions) that are most pertinent at any given moment. As a result, this focused 
approach leads to more precise predictions. It is therefore beneficial to strategically assign attention 
weights to specific data within the model to maximize its effectiveness. 

 
Deep learning models are a type of artificial neural network that aim to learn and extract complex 

patterns and representations from data. The purpose of deep learning models is to solve tasks such as 
classification, regression, and prediction by automatically learning and adapting to the underlying 
patterns in the data. A simplified overview of the steps involved in training a basic neural network, which 
is the simplest deep learning model, is shown in Algorithm 1. 
 
Algorithm 1: Basic Neural Network Algorithm 

Input: data collection and preprocessing (input data, clean and normalize the data, split the dataset 
into training, validation, and testing sets) 

Output: neural network model 
1. Initialize parameters: the weights and biases are initialized randomly or using specific 

initialization techniques, and input data is fed into the input layer of the network. 
2. Define the architecture of the neural network, including the number of layers and the number 

of neurons in each layer. Each neuron in the subsequent layers calculates a weighted sum of its 
inputs from the previous layer, adds its bias, and the activation functions to be used. 

3. Set the learning rate, set the number of iterations or epochs, representing the number of times 
the entire training dataset will be used for training. 

4. For each iteration in the training process: 
a) Perform forward propagation 
b) Calculate the loss or cost function 
c) Perform backward propagation  
d) Update the parameter (the weights and biases) using the gradients and learning rate. 

5. Repeat steps 4a-4d until convergence is achieved or the desired accuracy is reached. 
6. Evaluate the network’s performance on a separate dataset 
7. The trained neural network model is ready for inference or making predictions on new, unseen 

data. 

The provided pseudo-algorithm is for a basic neural network, a fundamental component of deep learning 
models. Deep learning models encompass a range of architectures, including convolutional neural 
networks (CNNs) for image processing, recurrent neural networks (RNNs) for sequential data, and 
transformers for natural language processing. Although the specific implementation details may vary 
across different deep learning architectures, the general concept of training through forward and 
backward propagation remains consistent. 
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While there has been a growing body of research on predicting travel time in transportation 
systems, significant gaps remain in the literature. For example, few researchers have integrated dynamic 
driver behaviours into their models. Most studies tend to consider only one or two types of dependencies 
that influence travel time, and many rely on stationary datasets that do not use GPS [10, 14, 62]. To 
address these gaps, this study aims to incorporate driver behaviour, along with other dynamic factors, 
into the travel time prediction model. Additionally, we will examine both short-term and long-term 
temporal and spatial dependencies, utilizing GPS datasets to provide a more comprehensive analysis. 
The contributions of this work can be summarized as follows: 

1. We present an innovative deep learning algorithm designed to predict travel time by analyzing 
trajectory data, which encompasses latitude, longitude, driver ID, time of day, time of week, and 
driver behavior. 

2. This travel time prediction model captures two essential types of dependencies: temporal and 
spatial dependencies, while considering both short-term and long-term effects.  

3. To enhance prediction accuracy beyond that of existing state-of-the-art models in the literature, 
we integrate advanced techniques such as Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs) in the 
proposed model. 

4. Furthermore, we conduct comprehensive numerical experiments utilizing real-world ride-hailing 
GPS trajectory data from floating vehicles, specifically taxis, thereby ensuring the practicality 
and relevance of our model. 

The remainder of this paper is organized as follows: Section 2 presents a literature review on travel 
time prediction and the various methods involved. Section 3 formally describes our problem, while 
Section 4 provides a numerical analysis, including an explanation of the datasets used and the results 
obtained. Finally, Section 5 concludes the paper and suggests directions for future research. 

 

2. Literature review 
 

2.1 Travel time estimation  

Travel time estimation has been studied extensively and can be divided into two groups based on the 
input query: route-based and origin-destination based. In other words, the input query can be a trajectory 
(sequence of locations) or only two points (origin and destination locations). There are two approaches 
to estimating the travel time of a route: the road segment and the entire path method. The road segment 
method calculates travel time by estimating the time for each individual segment of a route, while path 
method considers the total journey as a single unit to estimate overall travel time, often ignoring 
intermediate stops or turns in favor of travel time between start and end points. The primary difference 
is the level of detail: segment-based methods offer granular detail on each part of the trip, whereas path-
based methods provide a broader estimate for the entire journey [15, 16]. 

In the road segment-based prediction, every route is divided into several road segments, and the 
goal is to calculate the travel time of each road segment. Then, the travel time is simply the sum of the 
estimated travel times for the different segments [17]. As the correlation between road segments affects 
the travel time of a path, some papers considered the relationships among adjacent road segments using 
Hidden Markov Model [18] or Predictive Regression Tree (PR-Tree) and Spatial-Temporal Probabilistic 
Graphical Model (STPGM) [19].  Wang et al. [20] implemented an error-feedback recurrent 
convolutional neural network (eRCNN) to accurately estimate the traffic speed of each road segment, 
using spatiotemporal information of neighboring road segments as input. The delay time at intersections 
is calculated using an interpolation method, a joint probability model, or a dynamic Bayesian network 
to concatenate road segment travel times more accurately [21, 22]. Jenelius & Koutsopoulos [23] divided 
the travel time of a route into two parts: the individual travel time of segments and delay time due to 
intersections, traffic signals, turns, etc. Although these studies considered the time spent on the 
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connection of different road segments, their main focus is the accurate estimation of individual road 
segment travel time or speed. Furthermore, another issue of road segment-based prediction is that the 
travel time error of the whole path can acquire a large number after summing up individual errors if the 
path consists of many road segments [20]. 

According to the weakness of the individual road segment-based TTE method, some researchers 
predicted the travel time of a route by mining historical data and calculating the average travel time of 
extracted frequent patterns [24, 25, 26]. This method also suffers from two issues: first, the historical 
average-based estimation may not be very accurate. Second, the historical data can not definitely include 
any or sufficient information for the searched path. Sometimes, there is no trajectory passing the entire 
given path. This is called a data sparsity problem. To enhance the path-based TTE model and low 
sampling rate problem, Wang et al. [27] proposed a model called PTTE. They combined frequent sub-
path travel times while optimizing the trade-off between the length of a sub-path and the number of 
historical trajectory data traveling it (i.e., support). Yuan et al. [28] studied data sparseness and coverage 
using landmark graph. A landmark is defined as the top-k frequently traversed road segment based on 
historical data. They estimate the travel time between two landmarks whenever the historical data for 
each road segment is insufficient. However, this method can not be used for solving the data sparsity 
issue of roads with few traveled data, since the landmarks are chosen from frequently traveled roads 
[20]. 

 

 
Figure 1: The classification of travel time estimation research 

 
2.2 Travel time estimation models  

Travel time estimation models can be further classified into two types: model-based and data-driven 
[29]. The classification of travel time estimation papers is shown in Figure 1. The model-based methods 
are built on a set of assumptions about the underlying relationship between the input and output 
variables, like queuing theory [30, 31] and the Cell Transmission Model [32], while data-driven methods 
rely solely on the input data to make predictions. The data-driven methods are categorized into three 
groups: statistical methods, basic machine learning methods, and deep learning methods. 

Statistical models apply mathematical models and statistical assumptions for the prediction of 
traffic conditions, such as ARIMA [33, 34], Linear Regression [35, 36], Gaussian process [37, 38], 
Gaussian mixture regression [39], hidden Markov model [40, 41], Bayesian network [42], Kalman filter 
[43, 44]. However, the limitation of statistical models including difficulty in handling large complex 
datasets and the non-linearity of spatial-temporal correlation features in traffic data motivated 
researchers to explore the machine learning models such as the k-nearest neighbor algorithm (KNN) 
[45], support vector machine (SVM) [46, 47], and artificial neural network (ANN) to predict travel time 
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[37]. Lartey et al. [48] developed a comprehensive data-driven mechanism for travel time prediction that 
synergistically combines support vector machines (SVMs) and autoregressive integrated moving-
average (ARIMA) models. This approach capitalizes on the strengths of both techniques to effectively 
capture the nuances of traffic patterns. The utilization of data from a microsimulation platform further 
validates the effectiveness of their model.  Sheng et al. [14] proposed a forward-looking deep learning 
spatial-temporal model for predicting travel times, integrating trajectory data and traffic conditions via 
traffic-feature fusion. This innovative strategy highlights the value of merging diverse data sources for 
improved travel time forecasting. 

Although these models estimate the traffic conditions more accurately and are relatively suitable 
for more complex data, they cannot deal with the nonlinear correlation problem. The advancement of 
deep learning models gives researchers the opportunity to apply deep learning-based methodologies for 
time series data processing. Specifically, deep learning is more frequently being used in traffic prediction 
tasks due to the impact of feature extraction on prediction accuracy and the power of deep learning 
models in extracting the spatiotemporal correlation characteristics. Some recent deep learning models 
are convolutional neural network (CNN) for feature extraction, recurrent neural network (RNN) and its 
variants, including long short-term memory neural network (LSTM) [49], and gate recurrent unit neural 
network (GRU) for processing temporal information, graph convolution neural network (GCN) for 
feature extraction of non-Euclidean structured data, attention mechanism for capturing long time span 
features, etc. For example, Zhang et al. [50] designed a self-attention mechanism enhanced CNN for the 
long sequence time-series prediction. Researchers also integrate different deep learning models to 
achieve higher accuracy in prediction like the DeepTTE model which combines CNN and LSTM [20], 
the MCT-TTE model, which combines CNN and transformer models [51], and STGNN-TTE, which 
combines multi-stage spatiotemporal GCN and transformer layers [52]. Chen et al. [9] proposed a deep 
learning model integrated with bi-directional isometric-gated recurrent unit (BDIGRU) to estimate the 
travel time for vehicles in the business. Wang et al. [10] predicted the vehicle travel times efficiently by 
a proposed model including a deep learning framework with graph neural networks (GNN) and RNN. 
Liu et al. [53] introduced an integrated model to estimate route-specific origin-destination travel times 
for vehicles. This model uses the advanced machine learning technique of active adversarial inverse 
reinforcement learning (AA-IRL) alongside a network architecture, the AdaBoost multi-fusion graph 
convolutional Transformer (AMGC-Transformer). By incorporating dynamic factors such as weather 
conditions, traffic patterns, time of day, and driver ID, the model enhances the accuracy of travel time 
predictions. Sun et al. [54] addressed the next challenge in location estimation by developing two deep 
learning models based on sequential and hybrid long short-term memory (LSTM) networks. Their 
approach illustrates the potential of leveraging deep learning in traffic forecasting. Similarly, Luo et al. 
[55] developed a robust deep learning-based framework for predicting vehicle travel times, accounting 
for various vehicle types and the proximity of locations within the transportation network. By integrating 
a CNN with spatial-temporal attention, their framework excels at analysing spatial patterns within the 
datasets, demonstrating its capability in handling complex travel scenarios.  

The literature review highlights the existing approaches for travel time prediction and challenges. 
To tackle the previously identified difficulties, our research proposes an accurate travel time estimation 
using a combination of TCN and LSTM to learn and extract both short- and long-term temporal 
information. The impact of external factors like time ID, week ID, and drivers’ habits is also considered 
in this research. A hybrid TCN-LSTM model presents a superior solution by effectively integrating the 
strengths of both architectures. The TCN layer excels in extracting multi-scale temporal features and 
identifying local patterns from the raw input data. Subsequently, the LSTM layer builds on these 
extracted features to capture complex, long-term dependencies [56, 57]. This synergistic approach offers 
a robust framework that adeptly navigates the intricate, non-linear, and dynamic nature of traffic data, 
ultimately enhancing prediction accuracy compared to relying on either model independently. 

 
 
3.  Problem definition 
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In this study, we aim to estimate travel times for road segments and entire routes using trajectory data. 
We are interested in predicting how long it will take for a vehicle to travel between consecutive GPS 
points along a given trajectory. This information is valuable for various applications such as traffic 
management, route planning, and transportation optimization. To accomplish this, we use trajectory data 
comprising latitude, longitude, time of day, time of week, and driver ID. Each trajectory is composed of 
a sequence of GPS points that represent the vehicle's movement over time. We define a road segment as 
the route between three consecutive GPS points. By considering these road segments, we can divide the 
trajectory into smaller segments and estimate the travel time for each segment. We use different deep 
learning algorithms to analyze the data and learn from the patterns. This allows us to estimate travel 
times for individual road segments and the entire route concurrently. 
In this section, we define the input and output of the problem. 
 
3.1 Input:  
The input of our problem is a trajectory T, which consists of several consecutive GPS points. Each GPS 
point has latitude, longitude, time of day, time of week, and driver ID elements. The link between three 
consecutive points is defined as a road segment.  
 
3.2 Output: 
According to the two methods discussed in the literature review, we predict the travel time for each road 
segment and the entire route simultaneously. So, the outputs of our model for each trajectory are the 
estimated travel time for each road segment and the whole route. The entire route’s travel time is 
calculated as a trainable weighted sum of the travel times of the road segments. 
 
3.3 Model architecture 
Our proposed framework includes three sections: attribute embedding, spatiotemporal learning, and 
multitask learning section. Figure 2 shows the architecture of our model. The problem input is a 
trajectory with latitude, longitude, time, and driver ID elements. The road segment is defined as the link 
between 𝑘𝑘 = 3  consecutive GPS points. The output of the model is the predicted travel time for each 
road segment and the entire route. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The overview of our proposed model 
 

3.3.1 Attribute embedding  

Several factors affect travel time, including time of day, day of the week, driver behavior, and weather. 
Extracting the pattern of these external factors and considering their impact on travel time using learning 
algorithms can result in a more accurate estimation. Three external elements are considered in this paper: 
time ID (time of day: 0 to 1439 min), week ID (time of week: 0 to 6), and driver ID. These factors are 
categorical attributes that should be converted to numerical vectors using the embedding method.  
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3.3.2 Spatiotemporal learning 
The spatiotemporal learning section aims to learn spatial and temporal correlations of GPS points. In 
this part, the model learns the special features of GPS data, such as traffic lights, speed limit, turning, 
changing speed at intersections, etc. Since these conditions are dynamic at different times of a day, we 
also need to capture temporal dependencies. First, to capture the spatial factors precisely, we apply a 
non-linear mapping and then a CNN layer [27]. Instead of non-linear Geo-mapping of raw GPS data, 
some research mapped the GPS coordinates to a two-dimensional grid map and then the features of the 
grid map are extracted as images [19, 58]. However, the spatial information is not accurately represented 
by the direct mapping of GPS points to the grid cells. So, we apply a non-linear function to map the GPS 
point to the traj vector based on the following:  
 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 = tanh(𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . (𝑝𝑝𝑖𝑖. 𝑙𝑙𝑙𝑙𝑙𝑙 ∘  𝑝𝑝𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑙𝑙)) (1) 

where 𝑝𝑝𝑖𝑖 indicates 𝑖𝑖𝑡𝑡ℎ GPS point in the trajectory 𝑇𝑇 = �𝑃𝑃1, … . ,𝑃𝑃|𝑇𝑇|�, the  ͦ  indicates the concatenation 
operation and 𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is a learnable matrix with a size of 16 ∗ |𝑇𝑇|. |𝑇𝑇| is the number of all GPS points in 
the given trajectory. 
A usual approach to capture spatial dependencies is the convolutional neural network (CNN), which is 
mostly used for image or object processing. Thus, the output of non-linear mapping (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  ∈ 𝑅𝑅16∗|𝑇𝑇|)  is 
given to 1D-CNN with a kernel size of 3 (k =3) to create the feature map in Equation (2). It is worth 
mentioning that such input can be considered as a 16-channel input to the Conv layer. The output of the 
CNN module is a vector with a size of 16 ∗ (|𝑇𝑇|− 𝑘𝑘 + 1) based on the CNN structure.  
 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1𝐷𝐷(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖) (2) 

As the total distance and other embedded external attributes significantly influence the travel time, they 
are concatenated to the output of the CNN module, shown in Equation (3). Furthermore, the input of the 
CNN layer is concatenated with its output through skip connections to keep important information from 
the input, enabling the network to better learn the relationships between the input and output. 
 𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓 = (𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 ∘ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∘ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) ∘ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 (3) 

To capture the temporal dependencies of GPS points, two layers of LSTM and a temporal convolutional 
network are implemented. LSTM is a variant of RNNs, which have three gates, including input, forget, 
and output gates. These gates can help the model to memorize important information and forget 
unimportant ones, allowing the network to capture long-term dependencies. On the other hand, a 
temporal convolutional network (TCN) is a type of CNN for processing sequential data. It is suitable for 
modeling complex temporal patterns in the data since it can capture local and short-term dependencies 
in the data and learn hierarchical representations of the data. By applying both TCN and LSTM, the 
model can effectively benefit from the strengths of both methods, which result in a more complete and 
precise depiction of the time-related information. Therefore, combining these two methods can enhance 
the accuracy of travel time estimation. After these temporal learning layers, we have the sequence of 
hidden states at different time steps (�ℎ1, … , ℎ|𝑇𝑇|−𝑘𝑘+1�), where 
 ℎ𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑊𝑊ℎ . ℎ𝑖𝑖−1 + 𝑊𝑊𝑐𝑐 . 𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓� ° 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖�𝑙𝑙𝑙𝑙𝑙𝑙𝑓𝑓� (4) 

 
3.3.3  Multitask learning  
The multitask learning part uses the spatiotemporal learning section’s output {ℎ1, … , ℎ𝑇𝑇−𝑘𝑘+1}  to predict 
the travel time for each road segment and the entire route. The segment travel time (𝑡̂𝑡𝑖𝑖)  is predicted 
through fully connected layers, while the attention layer and residual fully connected layers are used to 
predict the entire path travel time (𝑡̂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). The attention layer is a way to sum all segments' travel time 
with different weights based on their impact on the entire path. To calculate the weights of hidden states, 
the attention mechanism considers the external attributes and the extracted spatiotemporal features of 
each segment. This study employs an attention mechanism inspired by the successful work in [20], 
effectively addressing multi-task learning. By learning from previous layers in the model, it adjusts 
weights to improve overall task performance. 
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4. Numerical Analysis for Travel Time Prediction  
 
4.1 Data 
To compare the results of our travel time prediction model and several existing methods, one large-scale 
dataset, the Chengdu dataset (the same as the study [20]), is selected in this research. This dataset is 
common in many papers based on the literature review, which helps to make a valid comparison. The 
Chengdu Dataset consists of 9,737,557 trajectories (1.4 billion GPS records) of 14,864 taxis in August 
2014 in Chengdu, China. However, limited computation resources make it challenging to use all raw 
trajectory data. We sampled 1,150,000 trajectories to test the performance of different algorithms and 
compare them. Before a prediction model, it is essential to preprocess raw data, as improper data records, 
such as outliers and missing values, can negatively affect the accuracy of the model [59]. The raw dataset 
contains driver ID, latitude, longitude, states, and timestamp columns, which are illustrated in Table 1. 
The input to the prediction model is GPS data in the form of trajectories. The processing of the data 
involves converting GPS points into meaningful trajectories and omitting outliers based on time and 
distance difference of consecutive points, and traffic-controlling criteria. First, the GPS data was sorted 
based on time, and the time and distance difference of each consecutive point was calculated. Then, if 
the time and distance difference of two consecutive points exceeds 1800 seconds or 1 km, or the driver 
ID is not the same, these two consecutive points are assigned to two different trajectories. 
Second, some traffic-controlling criteria were defined and applied to create more meaningful trajectories 
and remove outliers. These criteria are set based on typical characteristics of an urban trajectory. The 
following are some of the criteria: the travel distance greater than 100km or less than 0.5km, the average 
speed greater than 120km/h or less than 5km/h, and the travel time greater than 7200 seconds or less 
than 60 seconds [51]. In the end, the remaining trajectories are randomly partitioned (according to a 
Uniform/Normal distribution) to create polylines with lengths of 11 to 128 points. 
 

Table 1: Raw data of the Chengdu dataset [20]. 
 

 
 
 
 
 

 

 
 

 

 

 

 

4.2 Parameter setting 
In learning algorithms, data should be shuffled into three sets: train, development, and test. Training data 
is used for learning the model parameters. The development set is for checking the accuracy of different 

Driver ID Latitude Longitude State Time 

1 30.624806 104.136604 1 2014-08-03 9:18:46 PM 

1 30.624809 104.136612 1 2014-08-03 9:18:15 PM 

1 30.624811 104.136587 1 2014-08-03 9:20:17 PM 

1 30.624811 104.136596 1 2014-08-03 9:19:16 PM 

1 30.624811 104.136619 1 2014-08-03 9:17:44 PM 

1 30.624813 104.136589 1 2014-08-03 9:19:46 PM 

1 30.624815 104.136585 1 2014-08-03 9:21:18 PM 

1 30.624815 104.136587 1 2014-08-03 9:20:48 PM 

1 30.624815 104.136639 1 2014-08-03 9:17:14 PM 

1 30.624816 104.136569 1 2014-08-03 9:22:50 PM 

1 30.624816 104.136574 1 2014-08-03 9:22:19 PM 
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models and comparing them to find the best one, while the test set is unseen data for the best model to 
evaluate its performance. Considering the huge amount of data (more than 1 million), the dataset is 
divided into a 90% training set, 5% dev set, and 5% test set. Other parameters for the experiment are 
shown in Table 2. 
 

Table 2: Detailed parameter setting for TTE 
Section Parameter Value 

Embedding Week ID dimension 𝑅𝑅4 

Time ID dimension 𝑅𝑅9 

Driver ID dimension 𝑅𝑅17 

Spatial_CNN Number of filters 48 

Activation function Elu 

Temporal_LSTM Hidden size 128 

Number of layers 2 

Temporal_TCN Activation function Tanh and sigmoid 

Number of layers 2 

Multitask learning_entire route Activation function Leaky relu 

Hidden size 64,64,64 with residual connection 

Multitask learning_road segment Activation function Leaky relu 

Hidden size 64,32 

 
The optimization algorithm for training parameters is Adam, and the learning rate is scheduled based on 
an exponential decay formula with an initial learning rate of 0.001 and a decay rate of 0.98. The batch 
size during training is 100, and we train the model for 60 epochs and the best model is selected based on 
validation loss. The training and evaluation process is conducted on a workstation with a GPU (NVIDIA 
TITAN V) with 64 GB of available RAM. Adam, which stands for Adaptive Moment Estimation, is a 
widely used and efficient optimization algorithm for training deep learning models [60, 61]. It works by 
adaptively adjusting the learning rate for each parameter of the algorithm based on the first and second 
moments of the gradients. This approach combines the advantages of momentum with adaptive learning 
rates, helping models converge faster and more smoothly. 
 
4.3 Results and discussion 
The objective function to train different models is set to minimize mean absolute percentage error 
(MAPE), a widely recognized relative loss metric. The MAPE is suitable for both long and short paths. 
MAPE is commonly used to assess the accuracy of travel time prediction models [45], and in line with 
this established practice, we have chosen MAPE as our key evaluation metric. Our model utilizes a loss 
function that incorporates a weighted sum of losses from individual road segments as well as the entire 
route, enhancing its accuracy. To evaluate the performance of our proposed model, we conducted a 
comparison with four other models, which allows us to highlight its strengths and identify areas for 
improvement. The models included in our comparison are as follows: 
• DeepTTE: which uses a Geo-conv layer and LSTM to capture spatial and temporal dependencies 

[20]. 
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• RNNTTE: a streamlined version of DeepTTE, which uses a basic RNN instead of LSTM [20]. 
• Transformer: this has the same attribute and multitask learning sections as the proposed model but 

utilizes a 6-layer encoder transformer with 4 heads to capture temporal information [51]. 
• GCN-2TCN: which uses a graph convolutional network instead of 1D-CNN to capture spatial 

correlations and only two layers of TCN for temporal learning [52]. 
 
 

Table 3: Performance comparison of different models 

Model MAPE (%) 

DeepTTE 8.714 

RNNTTE 8.899 

Transformer 11.093 

GCN-2TCN 9.859 

Our algorithm 5.787 
 
Our algorithm demonstrated a higher accuracy, achieving a MAPE of 5.787%, which is better than the 
other algorithms, as indicated by the MAPE results in Table 3 and illustrated in Figure 3. The key factor 
for predicting travel time lies in learning spatiotemporal features, which we accomplished using CNN, 
LSTM, and TCN. The comparison of various algorithms with different structures for extracting 
spatiotemporal correlations highlights the importance of this module in making accurate predictions. By 
leveraging LSTM for short-term dependencies and TCN for long-term dependencies, we observed a 
significant improvement in estimation accuracy. 
 

 
Figure 3: Performance comparison of different solution models 

 
 
5. Conclusions 
 
This research presents a promising approach to overcoming the challenges of realistic and dynamic 
transportation systems by enhancing vehicle travel time predictions through the use of an advanced deep 
learning algorithm. By leveraging the strengths of Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs), we have developed 
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an algorithm that shows considerable improvement over existing methods for predicting vehicle travel 
times. The integration of CNNs allows for effective extraction of spatial features from trajectory data, 
while LSTMs are particularly effective in capturing long-term dependencies and patterns within 
sequential data. Additionally, TCNs offer a powerful convolution-based method that combines temporal 
convolutions and dilation to glean intricate temporal patterns. This unique combination allows our model 
to thoroughly understand both the spatial structure and the temporal dynamics of complex datasets, 
significantly enhancing its performance and application potential. In our travel time prediction model, 
we define a road segment as the route between three consecutive GPS points. To better reflect realistic 
driving conditions, instead of considering the Euclidean distance, we include comprehensive trajectory 
data such as latitude, longitude, time of day, time of week, driving habits, and driver ID for each segment 
in the model. We have validated our proposed model through a comparative analysis against existing 
models, utilizing large-scale, real-world data from Chengdu taxi datasets and measuring performance 
using the Mean Absolute Percent Error (MAPE). Our findings indicate a notable improvement of 2.9% 
in travel time prediction accuracy over other state-of-the-art models highlighted in the literature.  

This work presents two key contributions that have the potential to substantially enhance our 
understanding of transportation systems. Firstly, by integrating deep learning networks for vehicle travel 
time prediction, this study accounts for real traffic conditions and speed flow. This thoughtful approach 
results in a more accurate and realistic portrayal of travel times, which can significantly improve 
transportation problem optimization. Secondly, the development of an innovative deep learning model 
using a comprehensive real-world GPS dataset has shown remarkable performance, achieving greater 
accuracy in travel time estimation compared to existing models. This breakthrough opens the door to 
creating more efficient transportation systems that can adapt to the dynamic nature of travel conditions. 
In summary, this research offers valuable insights into employing advanced artificial intelligence and 
data-driven strategies to predict vehicle travel times effectively. These advancements have the potential 
to substantially improve transportation systems, enabling them to respond adeptly to the constantly 
changing nature of road transport. The broader implications of this work include enhanced efficiency, 
reduced operational costs, and a significant improvement in the quality of life within urban areas.  

This research can be further extended in several important ways. In our current study, we primarily 
focused on using a single route generated between each pair of nodes via the Google Direction API to 
estimate travel times. However, in real-world scenarios, multiple routes exist between an origin and a 
destination at different departure times, which results in varying travel durations. Therefore, vehicle 
departure time could be considered as a third dimension in the model, alongside origin and destination, 
for generating various routes and selecting the best one for minimum travel time in future research. 
Additionally, future research would greatly benefit from incorporating more factors, including weather 
data, vehicle counts over specific distances, traffic congestion and its real-time fluctuations, driving 
behaviour, road construction activities, and large public gatherings into the analysis.  In future work, we 
could also utilize several other datasets to validate the proposed model. By integrating these various 
elements, we can enhance the accuracy and realism of travel time estimations, leading to more precise 
system optimizations that respond to changing road and traffic conditions. By continually advancing the 
integration of artificial intelligence, data-driven methodologies, and real-time data utilization, 
researchers can unlock greater potential for optimizing transportation systems and developing 
sustainable and efficient logistics networks. 

 
Acknowledgement 
This manuscript is based on Zahra Ejabati Emanab's master's thesis, supervised by Dr. Yuvraj Gajpal. 
We greatly appreciate the financial support provided by the Asper School of Business in conducting this 
research.   
 
 
 
 



Journal of Intelligent and Sustainable Systems 2025, 1(1) 
             

14 
 

References 
1. Zhang, M., Li, Z., Si, H., Cheng, L., Zhou, X., & Wang, B. (2023). Urban travel time and 

residential location choice: The impacts of traffic congestion. Sustainable Cities and Society, 99, 
104975.  

2. Bouzouina, L., Baraklianos, I., Bonnel, P., & Aissaoui, H. (2021).  Renters vs owners: The 
impact of accessibility on residential location choice. Evidence from Lyon urban area, France 
(1999–2013). Transport Policy, 109, 72-84. 

3. Caulfield, B., & Charly, A. (2022). Examining the potential environmental and travel time saved 
benefits of remote working hubs. Transport Policy, 127, 139-147. 

4. Sun, Y. Y., & Lin, Z.W. (2017). Move fast, travel slow: the influence of high-speed rail on 
tourism in Taiwan. Journal of Sustainable Tourism, 26(3), 433–450. 

5. Wang, Y., Tian, Z., & Fu, H. (2024). Multivariate USV motion prediction method based on a 
temporal attention weighted TCN-Bi-LSTM model. Journal of Marine Science and Engineering, 
12(5), 711. 

6. Groß, P. O., Ulmer, M. W., Ehmke, J. F., & Mattfeld, D.C. (2015). Exploiting travel time 
information for reliable routing in city logistics. Transportation Research Procedia, 10, 652-661. 

7. Kandiri, A., Ghiasi, R., Nogal, M., & Teixeira, R. (2024). Travel time prediction for an intelligent 
transportation system based on a data-driven feature selection method considering temporal 
correlation. Transportation Engineering, 18, 100272. 

8. Guo, J., Wang, W., Guo, J., D’Ariano, A., Bosi, T., & Zhang, Y. (2024). An instance-based 
transfer learning model with attention mechanism for freight train travel time prediction in the 
China–Europe railway express. Expert Systems with Applications, 251, 123989. 

9. Chen, C.Y.T., Sun, E.W., & Lin, Y-B. (2025).  Reconciling spatiotemporal conjunction with 
digital twin for sequential travel time prediction and intelligent routing. Annals of Operations 
Research, 348, 671–716.  

10. Wang, D., Zhu, J., & Yin, Y. (2024). Dynamic travel time prediction with spatiotemporal 
features: using a GNN-based deep learning method. Annals of Operations Research, 340, 571–
591. 

11. Kim, Y., Tak, H-Y., Kim, S., & Yeo, H. (2024).  A hybrid approach of traffic simulation and 
machine learning techniques for enhancing real-time traffic prediction. Transportation Research 
Part C: Emerging Technologies, 160, 104490. 

12. Al-Ghobari, M., Muneer, A., & Fati, S. M. (2021). Location-aware personalized traveler 
recommender system (LAPTA) using collaborative filtering KNN. Computers, Materials & 
Continua, 69(2). 

13. Shih, S.Y.; Sun, F.K., & Lee, H.Y. (2019). Temporal pattern attention for multivariate time series 
forecasting. Machine Learning, 108, 1421–1441. 

14. Sheng, Z., Lv, Z., Li, J., Xu, Z., Sun, H., Liu, X., & Ye, R. (2023).  Taxi travel time prediction 
based on fusion of traffic condition features. Computers and Electrical Engineering, 105, 108530. 

15. Mansurova, A., Mussina, A., Aubakirov, S., Nugumanova, A., & Yedilkhan, D. (2025). From 
raw GPS to GTFS: a real-world open dataset for bus travel time prediction. Data, 10(8), 1-16. 

16. Al-Naim, R., & Lytkin, Y. (2021). Review and comparison of prediction algorithms for the 
estimated time of arrival using geospatial transportation data. Procedia Computer Science, 193, 
13-21. 

17. Liu, H., Xu, H., Yan, Y., Cai, Z., Sun, T., & Li, W. (2020). Bus arrival time prediction based on 
LSTM and spatial-temporal feature vector. IEEE Access 2020, 8, 11917–11929. 

18. Yang, B., Guo, C., & Jensen, C. S. (2013). Travel cost inference from sparse, spatio temporally 
correlated time series using Markov models. Proceedings of the VLDB Endowment, 6(9), 769-
780. 

19. Wang, D., Cao, W., Xu, M., & Li, J. (2016). ETCPS: An effective and scalable traffic condition 
prediction system. Lecture Notes in Computer Science (Including Subseries Lecture Notes in 
Artificial Intelligence and Lecture Notes in Bioinformatics), 9643.  



Journal of Intelligent and Sustainable Systems 2025, 1(1) 
             

15 
 

20. Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. (2018). When will you arrive? Estimating 
travel time based on deep neural networks. 32nd AAAI Conference on Artificial Intelligence, 
AAAI 2018. 

21. Hofleitner, A., Herring, R., Abbeel, P., & Bayen, A. (2012). Learning the dynamics of arterial 
traffic from probe data using a dynamic Bayesian network. IEEE Transactions on Intelligent 
Transportation Systems, 13(4), 1679-1693. 

22. Hofleitner, A., & Bayen, A. (2011). Optimal decomposition of travel times measured by probe 
vehicles using a statistical traffic flow model. In 2011 14th International IEEE Conference on 
Intelligent Transportation Systems (ITSC) (pp. 815-821), IEEE. 

23. Jenelius, E., & Koutsopoulos, H. N. (2013). Travel time estimation for urban road networks using 
low frequency probe vehicle data. Transportation Research Part B: Methodological, 53, 64-81. 

24. Kwesiga, D.K., Guin, A., & Hunter, M. (2025). Analysis of bus dwell times from automated 
passenger count data and the impact of dwell-time variability on the performance of transit signal 
priority. Public Transport. 1–23. 

25. Yin, Z., & Zhang, B. (2023). Bus travel time prediction based on the similarity in drivers’ driving 
styles. Future Internet, 15, 222. 

26. Rahmani, M., Jenelius, E., & Koutsopoulos, H. N. (2013). Route travel time estimation using 
low-frequency floating car data. In 16th international IEEE conference on intelligent 
transportation systems, 2292-2297, IEEE. 

27. Wang, Z., Fu, K., & Ye, J. (2018). Learning to estimate the travel time. In Proceedings of the 
24th ACM SIGKDD international conference on knowledge discovery & data mining, 858-866. 

28. Yuan, J., Zheng, Y., Xie, X., & Sun, G. (2011). T-drive: Enhancing driving directions with taxi 
drivers' intelligence. IEEE Transactions on Knowledge and Data Engineering, 25(1), 220-232. 

29. Bai, M., Lin, Y., Ma, M., & Wang, P. (2018). Travel-time prediction methods: a review. In 
International Conference on Smart Computing and Communication (pp. 67-77). Cham: Springer 
International Publishing. 

30. Shu, W., Cai, K., & Xiong, N.N. (2022). A short-term traffic flow prediction model based on an 
improved gate recurrent unit neural network.  IEEE Transactions on Intelligent Transportation 
Systems, 23(9), 16654-16665. 

31. Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H. N., & Mishalani, R. (2001). Network 
state estimation and prediction for real-time traffic management. Networks and spatial 
economics, 1(3), 293-318. 

32. Wan, N., Gomes, G., Vahidi, A., & Horowitz, R. (2014). Prediction on travel-time distribution 
for freeways using online expectation maximization algorithm. In Transportation Research 
Board 93rd Annual Meeting (No. 14-3221). 

33. Zhang, Y., Zhang, Y., & Haghani, A. (2014). A hybrid short-term traffic flow forecasting method 
based on spectral analysis and statistical volatility model. Transportation Research Part C: 
Emerging Technologies, 43, 65–78. 

34. Xu, F., Lin, Y., Huang, J., Wu, D., Shi, H., Song, J., & Li, Y. (2016). Big data driven mobile 
traffic understanding and forecasting: a time series approach. IEEE Transactions on Services 
Computing, 9(5), 796–805.  

35. Kwon, J., Coifman, B., & Bickel, P. (2000). Day-to-day travel-time trends and travel-time 
prediction from loop-detector data. Transportation Research Record, 1717. 

36. Sun, H., Liu, H. X., Xiao, H., He, R. R., & Ran, B. (2003). Use of local linear regression model 
for short-term traffic forecasting. Transportation Research Record, 1836. 

37. Xu, Y., Yin, F., Xu, W., Lin, J., & Cui, S. (2019). Wireless traffic prediction with scalable 
gaussian process: framework, algorithms, and verification. IEEE Journal on Selected Areas in 
Communications, 37(6). 

38. Zhao, J., & Sun, S. (2016). High-order gaussian process dynamical models for traffic flow 
prediction. IEEE Transactions on Intelligent Transportation Systems, 17(7).  



Journal of Intelligent and Sustainable Systems 2025, 1(1) 
             

16 
 

39. Qi, G., Ceder, A., Zhang, Z., Guan, W., & Liu, D. (2021). New method for predicting long-term 
travel time of commercial vehicles to improve policy-making processes.  Transportation 
Research Part A: Policy and Practice,145, 132-152. 

40. Luo, Z., Shi, H., Liu, W., & Jin, Y. (2020). HMM-based traffic situation assessment and 
prediction method. CICTP 2020: Transportation Evolution Impacting Future Mobility - Selected 
Papers from the 20th COTA International Conference of Transportation Professionals. 

41. Zheng, Y., Li, Y., Own, C. M., Meng, Z., & Gao, M. (2018). Real-time prediction and navigation 
on traffic congestion model with equilibrium Markov chain. International Journal of Distributed 
Sensor Networks, 14(4). 

42. Xu, Y., Kong, Q. J., Klette, R., & Liu, Y. (2014). Accurate and interpretable Bayesian MARS 
for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems, 15(6). 

43. Xie, Y., Zhang, Y., & Ye, Z. (2007). Short-term traffic volume forecasting using Kalman filter 
with discrete wavelet decomposition. Computer-Aided Civil and Infrastructure Engineering, 
22(5).  

44. Xu, T. Dong, Hao, Y., Peng, Z. ren, & Sun, L-J. (2012). Real-time travel time predictor for route 
guidance consistent with driver behavior. Canadian Journal of Civil Engineering, 39(10).  

45. Murni, Kosasih, R., Fahrurozi, A., Handhika, T., Sari, I., & Lestari, D. P. (2020). Travel time 
estimation for destination in Bali using kNN-regression method with TensorFlow. IOP 
Conference Series: Materials Science and Engineering, 854(1). 

46. Chen, X. M., Gong, H. B., & Wang, J. N. (2012). BRT vehicle travel time prediction based on 
SVM and Kalman filter. Journal of Transportation Systems Engineering and Information 
Technology, 12(4), 29-34.  

47. Gao, P., Hu, J., Zhou, H., & Zhang, Y. (2016). Travel time prediction with immune genetic 
algorithm and support vector regression. Proceedings of the World Congress on Intelligent 
Control and Automation (WCICA), 2016, September.  

48. Lartey, B., Zeleke, L., Yan, X., Gupta, K. D., Homaifar, A., & Karimoddini, A. (2022). A data-
driven approach for travel time prediction and analysis. In 2022 IEEE International Conference 
on Systems, Man, and Cybernetics (SMC), 834-839. 

49. Liu, Y., Wang, Y., Yang, X., & Zhang, L. (2018). Short-term travel time prediction by deep 
learning: A comparison of different LSTM-DNN models. IEEE Conference on Intelligent 
Transportation Systems, Proceedings, ITSC, 2018, March. 

50. Zhang, L., Cai, Y., Huang, H., Li, A., Yang, L., & Zhou, C. (2022). A CNN-LSTM model for 
soil organic carbon content prediction with long time series of MODIS-based phenological 
variables. Remote sensing, 14(18), 4441. 

51. Liu, F., Yang, J., Li, M., & Wang, K. (2022). MCT-TTE: travel time estimation based on 
transformer and convolution neural networks. Scientific Programming, 2022. 

52. Jin, G., Wang, M., Zhang, J., Sha, H., & Huang, J. (2022). STGNN-TTE: travel time estimation 
via spatial–temporal graph neural network. Future Generation Computer Systems, 126.  

53. Liu, S., Zhang, Y., Wang, Z., Liu, X., & Yang, H. (2025). Personalized origin–destination travel 
time estimation with active adversarial inverse reinforcement learning and Transformer. 
Transportation Research Part E: Logistics and Transportation Review, 193, 103839. 

54. Sun, J., & Kim, J. (2021). Joint prediction of next location and travel time from urban vehicle 
trajectories using long short-term memory neural networks. Transportation Research Part C: 
Emerging Technologies, 128,103114. 

55. Luo, S., Zou, F., Zhang, C., Tian, J., Guo, F., & Liao, L. (2022). Multi-View Travel Time 
Prediction Based on Electronic Toll Collection Data. Entropy, 24(8), 1050. 

56. Liu, S., Du, L., Cao, T., & Zhang, T. (2024). Research on a passenger flow prediction model 
based on BWO-TCLS-Self-Attention. Electronics, 13(23), 4849. 

57. Tian, J., Liu, H., Gan, W., Zhou, Y., Wang, N., & Ma, S. (2025). Short-term electric vehicle 
charging load forecasting based on TCN-LSTM network with comprehensive similar day 
identification. Applied Energy, 381, 125174. 



Journal of Intelligent and Sustainable Systems 2025, 1(1) 
             

17 
 

58. Liu, Q., Wu, S., Wang, L., & Tan, T. (2016). Predicting the next location: A recurrent model 
with spatial and temporal contexts. 30th AAAI Conference on Artificial Intelligence, AAAI 
2016. 

59. Zheng, Y. (2015). Trajectory data mining: An overview. ACM Transactions on Intelligent 
Systems and Technology, 6(3).  

60. Reyad, M., Sarhan, A. M., & Arafa, M. (2023). A modified Adam algorithm for deep neural 
network optimization. Neural Computing and Applications, 35(23), 17095-17112. 

61. Sun, H., Zhou, W., Yang, J., Shao, Y., Xing, L., Zhao, Q., & Zhang, L. (2024). An improved 
medical image classification algorithm based on Adam optimizer. Mathematics, 12(16), 2509. 

62. Shi, C., Zou, W., Wang, Y., Zhu, Z., Chen, T., Zhang, Y., & Wang, N. (2025). Enhancing travel 
time prediction for intelligent transportation systems: a high-resolution origin–destination-based 
approach with multi-dimensional features. Sustainability, 17(5), 2111. 

 
 


	2.1 Travel time estimation
	2.2 Travel time estimation models
	4.1 Data
	4.2 Parameter setting
	4.3 Results and discussion
	5. Conclusions

	References

