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Abstract

Accurate prediction of vehicle travel times is crucial for enhancing intelligent transportation systems,
optimizing routing solutions, improving ride-sharing services, and managing traffic effectively. There
are various methods available for predicting vehicle travel times between two locations, including both
model-based and data-driven approaches. Traditional models often fall short because they assume
Euclidean distance when predicting travel times between points. In this study, we focus on predicting
vehicle travel times for road segments and entire routes using detailed trajectory data that includes
latitude, longitude, time of day, time of week, driver habits, and driver ID. Each trajectory consists of a
sequence of GPS points that track a vehicle's movements over time. By defining a road segment as the
route between three consecutive GPS points, we can break down the trajectory into smaller segments,
enabling more accurate travel time estimates. Given the complexity of travel time prediction, which is
influenced by traffic flow conditions at different times and locations, we propose a deep learning
algorithm. This algorithm utilizes advanced techniques, including Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs).
Our approach demonstrates significant improvements over existing methods. Using the Mean Absolute
Percent Error (MAPE) metric, we compared our model with established ones, employing large-scale
Chengdu taxi datasets. Our results indicate a 2.9% improvement in travel time prediction accuracy,
highlighting our model's potential to surpass current solutions and paving the way for future research in
travel time estimation.

Keywords: Travel time prediction; Trajectory data; Deep learning; Long short-term memory
networks; Convolutional neural networks; Temporal convolutional networks

1. Introduction

Accurate travel times serve as a vital component in enhancing transportation systems, leading to
numerous positive outcomes. By optimizing operational costs, sustainability, service quality, and
customer satisfaction, accurate travel times also improve emergency response times and inform
infrastructure investment decisions to enable the efficient movement of people and goods in logistics.
When transportation planners and stakeholders can accurately predict vehicle travel times, they are
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empowered to make proactive, informed decisions about selecting routes and modes that are flexible,
cost-effective, sustainable, and competitive. This adaptability enables a quicker response to delays,
changing conditions, traffic congestion, and overall network performance, ultimately creating a more
predictable experience for everyone in the system [1, 2]. Such an approach significantly reduces anxiety
and frustration by providing drivers with real-time alternative routes, which enhances cooperation and
satisfaction throughout the logistics system.

Enhancing travel time predictions offers a powerful opportunity to boost sustainability efforts
significantly. By optimizing routing for personal, business, and public transportation, we can effectively
reduce congestion and fuel consumption, thereby lowering carbon emissions and increasing efficiency.
This improvement makes public transportation a more attractive option, encouraging more individuals
to choose it over private vehicles, thereby significantly reducing overall traffic levels. Moreover,
accurate travel time predictions pave the way for better urban planning and resource management,
contributing to the development of sustainable transportation systems across cities [3, 4]. In business
logistics, more accurate travel time forecasts can improve operational efficiency. By enabling thorough
planning, reducing costs, and enhancing reliability, businesses can optimize inventory management and
allocate resources more effectively at facilities. This not only reduces operational costs but also enhances
customer service, creating a win-win situation for both companies and their clients [5, 6].

When considering travel time from a route perspective, it encompasses the total duration needed
to complete a specific route, including any waiting times between segments, from the starting point to
the final destination. From a network standpoint, travel time impacts overall efficiency and planning.
Optimizing these aspects can enhance travel experiences, improve logistics, and other perspectives. The
time required to navigate particular road segments (or arcs) varies with departure time and current traffic
conditions. This variability in travel time profoundly affects the identification of the shortest path
between two locations in a complex, dynamic roadway system. Travel time is systematically calculated
by aggregating the duration of each segment along the route, with each segment’s duration being
influenced by factors such as speed, distance, and time-dependent conditions like traffic patterns and
weather. Importantly, while measuring travel time is essential for road networks, it is equally crucial for
other transportation modes, including railways, to ensure a comprehensive understanding of logistics
efficiency [7, 8].

Navigation applications like Google Maps, Waze, Apple Maps, and HERE WeGo play a vital role
in enhancing travel experiences by providing accurate travel time estimates. These estimates are
fundamental to Intelligent Transportation Systems (ITS), Advanced Traveler Information Systems
(ATIS), Advanced Driver Assistance Systems (ADAS), and Advanced Traffic Management Systems
(ATMS). By using advanced route guidance, these systems can predict real-time travel times for various
road segments, considering current conditions, congestion, and other influencing factors [7, 9-12]. The
value of travel time estimation is evident in its precision and the significant benefits it offers. Accurate
estimates help inform users of changing road conditions, optimize their trips, and reduce pollutant
emissions. Travel time predictions are categorized into three key horizons: short-term, medium-term,
and long-term. Short-term predictions, which focus on a timeframe of minutes to an hour, are beneficial
for real-time navigation and for avoiding immediate congestion. Medium-term predictions, covering
hours to a day, support daily planning. Long-term predictions, spanning days to weeks or even months,
are valuable for strategic initiatives such as infrastructure development and freight scheduling. By
leveraging a variety of features and advanced modeling techniques, including deep learning and other
data-driven approaches, transportation systems can continuously improve the accuracy of their
predictions across all time horizons.

In recent years, trajectory data in transportation, particularly in urban environments, has expanded
significantly due to the ongoing development and widespread adoption of location-aware sensing
systems such as GPS, Wi-Fi, RFID, and Bluetooth [11, 12]. These technologies provide valuable
geographic coordinates or relative positions of moving elements in transportation systems, facilitating a
variety of context-specific services. Examples include location-based alerts, business asset tracking, and
participatory sensing for environmental monitoring. This wealth of information empowers transportation
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planners to make informed, data-driven decisions. By predicting travel times, traffic flows, and other
critical factors within transportation networks, planners can enhance overall system efficiency.
However, despite these advancements, challenges remain, including rising air pollution, increasing
transportation costs, greater fuel consumption, higher accident rates, and deteriorating public health.
This context highlights the importance of continued investigation into traffic and road data. A key focus
of this effort is travel time prediction, which is essential for addressing sustainability issues, detecting
accidents, managing traffic and congestion, and improving dynamic navigation. Moreover, travel time
estimation serves as a foundational input for various associated analyses.

While predicting travel time is clearly significant, it poses a complex challenge for transportation
planners and other stakeholders, given the numerous dynamic factors at play. These factors include both
discrete and continuous speed functions, road conditions, traffic congestion (volume and speed), time of
day, day of the week, weather conditions, special events, road network characteristics (type and layout),
route preferences, and driver behavior. By identifying and addressing these variables, we can enhance
travel-time prediction efforts and contribute to more sustainable, efficient transportation systems.

Discrete and continuous speed functions are two distinct approaches used by the transportation
systems analyst for time-dependent travel time estimation. Discrete speed functions divide time into
predefined intervals and assume a constant speed within each interval. This simplifies the calculations
but may overlook the finer variations in speed. On the other hand, continuous speed functions consider
speed as a continuous variable, allowing for more precise estimations by capturing the dynamic nature
of speed changes over time. Trigonometric functions or other continuous functions are commonly
employed to model these variations accurately.

The following example can illustrate the time-dependent travel time calculation. Let’s consider a
delivery vehicle traveling from Node A to Node B, a distance of 50 kilometers (kms). Using a discrete
speed function with two time intervals due to the rush hour, the vehicle maintains a speed of 60 km/h
for the first 30 minutes and then reduces to 40 km/h. The estimated travel time would be 60 minutes,
which is the first 30 minutes plus the time to travel the remain distance of 20 km.

When considering time-dependent travel time in the transportation problem, using discrete or
continuous speed levels to estimate travel times has limitations. Using discrete speed levels, such as
predefined speed categories (e.g., low, medium, high), may not capture the nuanced variations in travel
times. Traffic conditions can change rapidly, and discrete speed levels may not accurately reflect the
speeds experienced at different times of day or on specific road segments.

On the other hand, using continuous speed levels, where speed is treated as a variable, provides
greater flexibility than discrete levels. While continuous speed models offer this advantage, they pose
unique challenges for accurately estimating travel times. The complexity arises from various factors,
including time of day, traffic congestion, and road conditions, which all influence travel time variations.
To effectively utilize continuous speed models, it’s essential to account for these multiple variables,
which adds a layer of complexity to the estimation process. Additionally, it's essential to recognize that
these models may face difficulties in generalizing across different scenarios or in capturing non-linear
variations in speed accurately. They also necessitate specific assumptions and parameter choices, which
can affect their reliability. Aspects such as traffic lights, turns, and speed limits significantly impact
travel times and warrant consideration for more precise estimations.

While traditional methods, including statistical approaches and conventional machine learning
techniques (such as historical averages, time series models, and regression analysis), provide
foundational time estimates, they often lack the detail and accuracy required in complex real-world
scenarios with dynamic environments. In this respect, with advancements in artificial intelligence,
machine learning, computational techniques, and big data technology, deep neural networks are
emerging as powerful tools. They offer researchers and practitioners innovative solutions for accurately
predicting travel times, paving the way for more reliable and comprehensive travel time assessments[10].

Given the complexities of predicting travel times under varying spatial and temporal traffic
conditions, this paper proposes a deep learning algorithm to enhance travel time prediction. Our
objective is to achieve more accurate predictions through the innovative integration of Temporal
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Convolutional Networks (TCN) and Long Short-Term Memory (LSTM) architectures, which effectively
capture both short- and long-term temporal patterns. This research considers external factors such as
time of day, time of week, and driver behavior, which can significantly influence travel time. The deep
learning algorithms analyse the dataset to estimate travel time by learning complex patterns from large,
diverse datasets, which enables more accurate predictions than traditional methods. To further improve
our predictions, we have implemented an attention mechanism and a multitask learning module,
allowing us to analyze travel times for individual road segments as well as for entire routes
simultaneously. Moreover, we aim to validate our proposed method by comparing its accuracy, as
indicated by the mean absolute percent error (MAPE), with existing models that utilize large-scale real-
world taxi datasets from Chengdu found in the literature. This approach not only highlights the
effectiveness of our algorithm but also contributes valuable insights to the field of travel time prediction.
Attention mechanisms in deep learning play a crucial role in enhancing models' ability to capture
complex information and focus on the most relevant elements of the input data. This capability
significantly improves accuracy, particularly for long sequences [5, 13]. When applied to travel time
prediction, these mechanisms allow the model to emphasize certain historical data points (like speed,
time of day, or road conditions) that are most pertinent at any given moment. As a result, this focused
approach leads to more precise predictions. It is therefore beneficial to strategically assign attention
weights to specific data within the model to maximize its effectiveness.

Deep learning models are a type of artificial neural network that aim to learn and extract complex
patterns and representations from data. The purpose of deep learning models is to solve tasks such as
classification, regression, and prediction by automatically learning and adapting to the underlying
patterns in the data. A simplified overview of the steps involved in training a basic neural network, which
is the simplest deep learning model, is shown in Algorithm 1.

Algorithm 1: Basic Neural Network Algorithm

Input: data collection and preprocessing (input data, clean and normalize the data, split the dataset
into training, validation, and testing sets)
Output: neural network model

1. Initialize parameters: the weights and biases are initialized randomly or using specific
initialization techniques, and input data is fed into the input layer of the network.

2. Define the architecture of the neural network, including the number of layers and the number
of neurons in each layer. Each neuron in the subsequent layers calculates a weighted sum of its
inputs from the previous layer, adds its bias, and the activation functions to be used.

3. Set the learning rate, set the number of iterations or epochs, representing the number of times
the entire training dataset will be used for training.

4. For each iteration in the training process:

a) Perform forward propagation
b) Calculate the loss or cost function
c) Perform backward propagation
d) Update the parameter (the weights and biases) using the gradients and learning rate.
. Repeat steps 4a-4d until convergence is achieved or the desired accuracy is reached.
Evaluate the network’s performance on a separate dataset
7. The trained neural network model is ready for inference or making predictions on new, unseen
data.

SN L

The provided pseudo-algorithm is for a basic neural network, a fundamental component of deep learning
models. Deep learning models encompass a range of architectures, including convolutional neural
networks (CNNs) for image processing, recurrent neural networks (RNNs) for sequential data, and
transformers for natural language processing. Although the specific implementation details may vary
across different deep learning architectures, the general concept of training through forward and
backward propagation remains consistent.
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While there has been a growing body of research on predicting travel time in transportation
systems, significant gaps remain in the literature. For example, few researchers have integrated dynamic
driver behaviours into their models. Most studies tend to consider only one or two types of dependencies
that influence travel time, and many rely on stationary datasets that do not use GPS [10, 14, 62]. To
address these gaps, this study aims to incorporate driver behaviour, along with other dynamic factors,
into the travel time prediction model. Additionally, we will examine both short-term and long-term
temporal and spatial dependencies, utilizing GPS datasets to provide a more comprehensive analysis.
The contributions of this work can be summarized as follows:

1. We present an innovative deep learning algorithm designed to predict travel time by analyzing
trajectory data, which encompasses latitude, longitude, driver ID, time of day, time of week, and
driver behavior.

2. This travel time prediction model captures two essential types of dependencies: temporal and
spatial dependencies, while considering both short-term and long-term effects.

3. To enhance prediction accuracy beyond that of existing state-of-the-art models in the literature,
we integrate advanced techniques such as Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs) in the
proposed model.

4. Furthermore, we conduct comprehensive numerical experiments utilizing real-world ride-hailing
GPS trajectory data from floating vehicles, specifically taxis, thereby ensuring the practicality
and relevance of our model.

The remainder of this paper is organized as follows: Section 2 presents a literature review on travel
time prediction and the various methods involved. Section 3 formally describes our problem, while
Section 4 provides a numerical analysis, including an explanation of the datasets used and the results
obtained. Finally, Section 5 concludes the paper and suggests directions for future research.

2. Literature review

2.1 Travel time estimation

Travel time estimation has been studied extensively and can be divided into two groups based on the
input query: route-based and origin-destination based. In other words, the input query can be a trajectory
(sequence of locations) or only two points (origin and destination locations). There are two approaches
to estimating the travel time of a route: the road segment and the entire path method. The road segment
method calculates travel time by estimating the time for each individual segment of a route, while path
method considers the total journey as a single unit to estimate overall travel time, often ignoring
intermediate stops or turns in favor of travel time between start and end points. The primary difference
is the level of detail: segment-based methods offer granular detail on each part of the trip, whereas path-
based methods provide a broader estimate for the entire journey [15, 16].

In the road segment-based prediction, every route is divided into several road segments, and the
goal is to calculate the travel time of each road segment. Then, the travel time is simply the sum of the
estimated travel times for the different segments [17]. As the correlation between road segments affects
the travel time of a path, some papers considered the relationships among adjacent road segments using
Hidden Markov Model [18] or Predictive Regression Tree (PR-Tree) and Spatial-Temporal Probabilistic
Graphical Model (STPGM) [19]. Wang et al. [20] implemented an error-feedback recurrent
convolutional neural network (eRCNN) to accurately estimate the traffic speed of each road segment,
using spatiotemporal information of neighboring road segments as input. The delay time at intersections
is calculated using an interpolation method, a joint probability model, or a dynamic Bayesian network
to concatenate road segment travel times more accurately [21, 22]. Jenelius & Koutsopoulos [23] divided
the travel time of a route into two parts: the individual travel time of segments and delay time due to
intersections, traffic signals, turns, etc. Although these studies considered the time spent on the
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connection of different road segments, their main focus is the accurate estimation of individual road
segment travel time or speed. Furthermore, another issue of road segment-based prediction is that the
travel time error of the whole path can acquire a large number after summing up individual errors if the
path consists of many road segments [20].

According to the weakness of the individual road segment-based TTE method, some researchers
predicted the travel time of a route by mining historical data and calculating the average travel time of
extracted frequent patterns [24, 25, 26]. This method also suffers from two issues: first, the historical
average-based estimation may not be very accurate. Second, the historical data can not definitely include
any or sufficient information for the searched path. Sometimes, there is no trajectory passing the entire
given path. This is called a data sparsity problem. To enhance the path-based TTE model and low
sampling rate problem, Wang et al. [27] proposed a model called PTTE. They combined frequent sub-
path travel times while optimizing the trade-off between the length of a sub-path and the number of
historical trajectory data traveling it (i.e., support). Yuan et al. [28] studied data sparseness and coverage
using landmark graph. A landmark is defined as the top-k frequently traversed road segment based on
historical data. They estimate the travel time between two landmarks whenever the historical data for
each road segment is insufficient. However, this method can not be used for solving the data sparsity

issue of roads with few traveled data, since the landmarks are chosen from frequently traveled roads
[20].

Entire path/
collective
Model driven |« > Route
Road
Travel time 0a
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Figure 1: The classification of travel time estimation research

2.2 Travel time estimation models

Travel time estimation models can be further classified into two types: model-based and data-driven
[29]. The classification of travel time estimation papers is shown in Figure 1. The model-based methods
are built on a set of assumptions about the underlying relationship between the input and output
variables, like queuing theory [30, 31] and the Cell Transmission Model [32], while data-driven methods
rely solely on the input data to make predictions. The data-driven methods are categorized into three
groups: statistical methods, basic machine learning methods, and deep learning methods.

Statistical models apply mathematical models and statistical assumptions for the prediction of
traffic conditions, such as ARIMA [33, 34], Linear Regression [35, 36], Gaussian process [37, 38],
Gaussian mixture regression [39], hidden Markov model [40, 41], Bayesian network [42], Kalman filter
[43, 44]. However, the limitation of statistical models including difficulty in handling large complex
datasets and the non-linearity of spatial-temporal correlation features in traffic data motivated
researchers to explore the machine learning models such as the k-nearest neighbor algorithm (KNN)
[45], support vector machine (SVM) [46, 47], and artificial neural network (ANN) to predict travel time
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[37]. Lartey et al. [48] developed a comprehensive data-driven mechanism for travel time prediction that
synergistically combines support vector machines (SVMs) and autoregressive integrated moving-
average (ARIMA) models. This approach capitalizes on the strengths of both techniques to effectively
capture the nuances of traffic patterns. The utilization of data from a microsimulation platform further
validates the effectiveness of their model. Sheng et al. [14] proposed a forward-looking deep learning
spatial-temporal model for predicting travel times, integrating trajectory data and traffic conditions via
traffic-feature fusion. This innovative strategy highlights the value of merging diverse data sources for
improved travel time forecasting.

Although these models estimate the traffic conditions more accurately and are relatively suitable
for more complex data, they cannot deal with the nonlinear correlation problem. The advancement of
deep learning models gives researchers the opportunity to apply deep learning-based methodologies for
time series data processing. Specifically, deep learning is more frequently being used in traffic prediction
tasks due to the impact of feature extraction on prediction accuracy and the power of deep learning
models in extracting the spatiotemporal correlation characteristics. Some recent deep learning models
are convolutional neural network (CNN) for feature extraction, recurrent neural network (RNN) and its
variants, including long short-term memory neural network (LSTM) [49], and gate recurrent unit neural
network (GRU) for processing temporal information, graph convolution neural network (GCN) for
feature extraction of non-Euclidean structured data, attention mechanism for capturing long time span
features, etc. For example, Zhang et al. [50] designed a self-attention mechanism enhanced CNN for the
long sequence time-series prediction. Researchers also integrate different deep learning models to
achieve higher accuracy in prediction like the DeepTTE model which combines CNN and LSTM [20],
the MCT-TTE model, which combines CNN and transformer models [51], and STGNN-TTE, which
combines multi-stage spatiotemporal GCN and transformer layers [52]. Chen et al. [9] proposed a deep
learning model integrated with bi-directional isometric-gated recurrent unit (BDIGRU) to estimate the
travel time for vehicles in the business. Wang et al. [10] predicted the vehicle travel times efficiently by
a proposed model including a deep learning framework with graph neural networks (GNN) and RNN.
Liu et al. [53] introduced an integrated model to estimate route-specific origin-destination travel times
for vehicles. This model uses the advanced machine learning technique of active adversarial inverse
reinforcement learning (AA-IRL) alongside a network architecture, the AdaBoost multi-fusion graph
convolutional Transformer (AMGC-Transformer). By incorporating dynamic factors such as weather
conditions, traffic patterns, time of day, and driver ID, the model enhances the accuracy of travel time
predictions. Sun et al. [54] addressed the next challenge in location estimation by developing two deep
learning models based on sequential and hybrid long short-term memory (LSTM) networks. Their
approach illustrates the potential of leveraging deep learning in traffic forecasting. Similarly, Luo et al.
[55] developed a robust deep learning-based framework for predicting vehicle travel times, accounting
for various vehicle types and the proximity of locations within the transportation network. By integrating
a CNN with spatial-temporal attention, their framework excels at analysing spatial patterns within the
datasets, demonstrating its capability in handling complex travel scenarios.

The literature review highlights the existing approaches for travel time prediction and challenges.
To tackle the previously identified difficulties, our research proposes an accurate travel time estimation
using a combination of TCN and LSTM to learn and extract both short- and long-term temporal
information. The impact of external factors like time ID, week ID, and drivers’ habits is also considered
in this research. A hybrid TCN-LSTM model presents a superior solution by effectively integrating the
strengths of both architectures. The TCN layer excels in extracting multi-scale temporal features and
identifying local patterns from the raw input data. Subsequently, the LSTM layer builds on these
extracted features to capture complex, long-term dependencies [56, 57]. This synergistic approach offers
a robust framework that adeptly navigates the intricate, non-linear, and dynamic nature of traffic data,
ultimately enhancing prediction accuracy compared to relying on either model independently.

3. Problem definition
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In this study, we aim to estimate travel times for road segments and entire routes using trajectory data.
We are interested in predicting how long it will take for a vehicle to travel between consecutive GPS
points along a given trajectory. This information is valuable for various applications such as traffic
management, route planning, and transportation optimization. To accomplish this, we use trajectory data
comprising latitude, longitude, time of day, time of week, and driver ID. Each trajectory is composed of
a sequence of GPS points that represent the vehicle's movement over time. We define a road segment as
the route between three consecutive GPS points. By considering these road segments, we can divide the
trajectory into smaller segments and estimate the travel time for each segment. We use different deep
learning algorithms to analyze the data and learn from the patterns. This allows us to estimate travel
times for individual road segments and the entire route concurrently.

In this section, we define the input and output of the problem.

3.1 Input:

The input of our problem is a trajectory T, which consists of several consecutive GPS points. Each GPS
point has latitude, longitude, time of day, time of week, and driver ID elements. The link between three
consecutive points is defined as a road segment.

3.2 Output:

According to the two methods discussed in the literature review, we predict the travel time for each road
segment and the entire route simultaneously. So, the outputs of our model for each trajectory are the
estimated travel time for each road segment and the whole route. The entire route’s travel time is
calculated as a trainable weighted sum of the travel times of the road segments.

3.3 Model architecture

Our proposed framework includes three sections: attribute embedding, spatiotemporal learning, and
multitask learning section. Figure 2 shows the architecture of our model. The problem input is a
trajectory with latitude, longitude, time, and driver ID elements. The road segment is defined as the link
between k = 3 consecutive GPS points. The output of the model is the predicted travel time for each
road segment and the entire route.

e | - A oA
rajectory 1D-CNN LST™M fully 1t
—> > "1,..., |T |— k+1
connected
cat cat |
attributes embedding TCN - Residual fully n
—>{ attention connected t[O tal

Figure 2: The overview of our proposed model
3.3.1 Attribute embedding

Several factors affect travel time, including time of day, day of the week, driver behavior, and weather.
Extracting the pattern of these external factors and considering their impact on travel time using learning
algorithms can result in a more accurate estimation. Three external elements are considered in this paper:
time ID (time of day: 0 to 1439 min), week ID (time of week: 0 to 6), and driver ID. These factors are
categorical attributes that should be converted to numerical vectors using the embedding method.
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3.3.2 Spatiotemporal learning
The spatiotemporal learning section aims to learn spatial and temporal correlations of GPS points. In
this part, the model learns the special features of GPS data, such as traffic lights, speed limit, turning,
changing speed at intersections, etc. Since these conditions are dynamic at different times of a day, we
also need to capture temporal dependencies. First, to capture the spatial factors precisely, we apply a
non-linear mapping and then a CNN layer [27]. Instead of non-linear Geo-mapping of raw GPS data,
some research mapped the GPS coordinates to a two-dimensional grid map and then the features of the
grid map are extracted as images [19, 58]. However, the spatial information is not accurately represented
by the direct mapping of GPS points to the grid cells. So, we apply a non-linear function to map the GPS
point to the #raj vector based on the following:
traj; = tanh(thj. (p;-lat o p;.lng)) 1)
where p; indicates (" GPS point in the trajectory T = {Pl, e P|T|}, the ° indicates the concatenation
operation and W, is a learnable matrix with a size of 16 = |T|. |T| is the number of all GPS points in
the given trajectory.
A usual approach to capture spatial dependencies is the convolutional neural network (CNN), which is
mostly used for image or object processing. Thus, the output of non-linear mapping (traj; € R1¢*ITly is
given to 1D-CNN with a kernel size of 3 (k =3) to create the feature map in Equation (2). It is worth
mentioning that such input can be considered as a 16-channel input to the Conv layer. The output of the
CNN module is a vector with a size of 16 * (|T| — k + 1) based on the CNN structure.
loc; = Conv1D(traj;) 2)
As the total distance and other embedded external attributes significantly influence the travel time, they
are concatenated to the output of the CNN module, shown in Equation (3). Furthermore, the input of the
CNN layer is concatenated with its output through skip connections to keep important information from
the input, enabling the network to better learn the relationships between the input and output.
locy = (loc; o dist o attr) o traj; A3
To capture the temporal dependencies of GPS points, two layers of LSTM and a temporal convolutional
network are implemented. LSTM is a variant of RNNs, which have three gates, including input, forget,
and output gates. These gates can help the model to memorize important information and forget
unimportant ones, allowing the network to capture long-term dependencies. On the other hand, a
temporal convolutional network (TCN) is a type of CNN for processing sequential data. It is suitable for
modeling complex temporal patterns in the data since it can capture local and short-term dependencies
in the data and learn hierarchical representations of the data. By applying both TCN and LSTM, the
model can effectively benefit from the strengths of both methods, which result in a more complete and
precise depiction of the time-related information. Therefore, combining these two methods can enhance
the accuracy of travel time estimation. After these temporal learning layers, we have the sequence of
hidden states at different time steps ({hl, ) h|T|_k+1}), where

h; = LSTM(Wj,. hi_y + W,..locy) ° TCN;(locy) 4)

3.3.3 Multitask learning

The multitask learning part uses the spatiotemporal learning section’s output {h, ..., hr_41} to predict
the travel time for each road segment and the entire route. The segment travel time (£;) is predicted
through fully connected layers, while the attention layer and residual fully connected layers are used to
predict the entire path travel time (£,4¢4;). The attention layer is a way to sum all segments' travel time
with different weights based on their impact on the entire path. To calculate the weights of hidden states,
the attention mechanism considers the external attributes and the extracted spatiotemporal features of
each segment. This study employs an attention mechanism inspired by the successful work in [20],
effectively addressing multi-task learning. By learning from previous layers in the model, it adjusts
weights to improve overall task performance.
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4. Numerical Analysis for Travel Time Prediction

4.1 Data

To compare the results of our travel time prediction model and several existing methods, one large-scale
dataset, the Chengdu dataset (the same as the study [20]), is selected in this research. This dataset is
common in many papers based on the literature review, which helps to make a valid comparison. The
Chengdu Dataset consists of 9,737,557 trajectories (1.4 billion GPS records) of 14,864 taxis in August
2014 in Chengdu, China. However, limited computation resources make it challenging to use all raw
trajectory data. We sampled 1,150,000 trajectories to test the performance of different algorithms and
compare them. Before a prediction model, it is essential to preprocess raw data, as improper data records,
such as outliers and missing values, can negatively affect the accuracy of the model [59]. The raw dataset
contains driver ID, latitude, longitude, states, and timestamp columns, which are illustrated in Table 1.
The input to the prediction model is GPS data in the form of trajectories. The processing of the data
involves converting GPS points into meaningful trajectories and omitting outliers based on time and
distance difference of consecutive points, and traffic-controlling criteria. First, the GPS data was sorted
based on time, and the time and distance difference of each consecutive point was calculated. Then, if
the time and distance difference of two consecutive points exceeds 1800 seconds or 1 km, or the driver
ID is not the same, these two consecutive points are assigned to two different trajectories.

Second, some traffic-controlling criteria were defined and applied to create more meaningful trajectories
and remove outliers. These criteria are set based on typical characteristics of an urban trajectory. The
following are some of the criteria: the travel distance greater than 100km or less than 0.5km, the average
speed greater than 120km/h or less than Skm/h, and the travel time greater than 7200 seconds or less
than 60 seconds [51]. In the end, the remaining trajectories are randomly partitioned (according to a
Uniform/Normal distribution) to create polylines with lengths of 11 to 128 points.

Table 1: Raw data of the Chengdu dataset [20].

Driver ID Latitude Longitude State Time
1 30.624806 104.136604 1 2014-08-03 9:18:46 PM
1 30.624809 104.136612 1 2014-08-03 9:18:15 PM
1 30.624811 104.136587 1 2014-08-03 9:20:17 PM
1 30.624811 104.136596 1 2014-08-03 9:19:16 PM
1 30.624811 104.136619 1 2014-08-03 9:17:44 PM
1 30.624813 104.136589 1 2014-08-03 9:19:46 PM
1 30.624815 104.136585 1 2014-08-03 9:21:18 PM
1 30.624815 104.136587 1 2014-08-03 9:20:48 PM
1 30.624815 104.136639 1 2014-08-03 9:17:14 PM
1 30.624816 104.136569 1 2014-08-03 9:22:50 PM
1 30.624816 104.136574 1 2014-08-03 9:22:19 PM

4.2 Parameter setting

In learning algorithms, data should be shuffled into three sets: train, development, and test. Training data
is used for learning the model parameters. The development set is for checking the accuracy of different
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models and comparing them to find the best one, while the test set is unseen data for the best model to
evaluate its performance. Considering the huge amount of data (more than 1 million), the dataset is
divided into a 90% training set, 5% dev set, and 5% test set. Other parameters for the experiment are
shown in Table 2.

Table 2: Detailed parameter setting for TTE

Section Parameter Value
Embedding Week ID dimension R*
Time ID dimension R®

Driver ID dimension RY7

Spatial CNN Number of filters 48
Activation function Elu
Temporal LSTM Hidden size 128
Number of layers 2
Temporal TCN Activation function Tanh and sigmoid
Number of layers 2
Multitask learning_entire route Activation function Leaky relu
Hidden size 64,64,64 with residual connection
Multitask learning_road segment Activation function Leaky relu
Hidden size 64,32

The optimization algorithm for training parameters is Adam, and the learning rate is scheduled based on
an exponential decay formula with an initial learning rate of 0.001 and a decay rate of 0.98. The batch
size during training is 100, and we train the model for 60 epochs and the best model is selected based on
validation loss. The training and evaluation process is conducted on a workstation with a GPU (NVIDIA
TITAN V) with 64 GB of available RAM. Adam, which stands for Adaptive Moment Estimation, is a
widely used and efficient optimization algorithm for training deep learning models [60, 61]. It works by
adaptively adjusting the learning rate for each parameter of the algorithm based on the first and second
moments of the gradients. This approach combines the advantages of momentum with adaptive learning
rates, helping models converge faster and more smoothly.

4.3 Results and discussion

The objective function to train different models is set to minimize mean absolute percentage error
(MAPE), a widely recognized relative loss metric. The MAPE is suitable for both long and short paths.
MAPE is commonly used to assess the accuracy of travel time prediction models [45], and in line with
this established practice, we have chosen MAPE as our key evaluation metric. Our model utilizes a loss
function that incorporates a weighted sum of losses from individual road segments as well as the entire
route, enhancing its accuracy. To evaluate the performance of our proposed model, we conducted a
comparison with four other models, which allows us to highlight its strengths and identify areas for
improvement. The models included in our comparison are as follows:

e DeepTTE: which uses a Geo-conv layer and LSTM to capture spatial and temporal dependencies

[20].
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e RNNTTE: a streamlined version of DeepTTE, which uses a basic RNN instead of LSTM [20].
e Transformer: this has the same attribute and multitask learning sections as the proposed model but
utilizes a 6-layer encoder transformer with 4 heads to capture temporal information [51].

e GCN-2TCN: which uses a graph convolutional network instead of 1D-CNN to capture spatial
correlations and only two layers of TCN for temporal learning [52].

Table 3: Performance comparison of different models

Model MAPE (%)
DeepTTE 8.714
RNNTTE 8.899
Transformer 11.093
GCN-2TCN 9.859
Our algorithm 5.787

Our algorithm demonstrated a higher accuracy, achieving a MAPE of 5.787%, which is better than the
other algorithms, as indicated by the MAPE results in Table 3 and illustrated in Figure 3. The key factor
for predicting travel time lies in learning spatiotemporal features, which we accomplished using CNN,
LSTM, and TCN. The comparison of various algorithms with different structures for extracting
spatiotemporal correlations highlights the importance of this module in making accurate predictions. By
leveraging LSTM for short-term dependencies and TCN for long-term dependencies, we observed a
significant improvement in estimation accuracy.

MAPE (%) for various solution models

12 11.093

10

DeepTTE RNNTTE Transformer  GCN-2TCN  Our algorithm

Figure 3: Performance comparison of different solution models

5. Conclusions

This research presents a promising approach to overcoming the challenges of realistic and dynamic
transportation systems by enhancing vehicle travel time predictions through the use of an advanced deep
learning algorithm. By leveraging the strengths of Convolutional Neural Networks (CNNs), Long Short-
Term Memory (LSTM) networks, and Temporal Convolutional Networks (TCNs), we have developed
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an algorithm that shows considerable improvement over existing methods for predicting vehicle travel
times. The integration of CNNs allows for effective extraction of spatial features from trajectory data,
while LSTMs are particularly effective in capturing long-term dependencies and patterns within
sequential data. Additionally, TCNs offer a powerful convolution-based method that combines temporal
convolutions and dilation to glean intricate temporal patterns. This unique combination allows our model
to thoroughly understand both the spatial structure and the temporal dynamics of complex datasets,
significantly enhancing its performance and application potential. In our travel time prediction model,
we define a road segment as the route between three consecutive GPS points. To better reflect realistic
driving conditions, instead of considering the Euclidean distance, we include comprehensive trajectory
data such as latitude, longitude, time of day, time of week, driving habits, and driver ID for each segment
in the model. We have validated our proposed model through a comparative analysis against existing
models, utilizing large-scale, real-world data from Chengdu taxi datasets and measuring performance
using the Mean Absolute Percent Error (MAPE). Our findings indicate a notable improvement of 2.9%
in travel time prediction accuracy over other state-of-the-art models highlighted in the literature.

This work presents two key contributions that have the potential to substantially enhance our
understanding of transportation systems. Firstly, by integrating deep learning networks for vehicle travel
time prediction, this study accounts for real traffic conditions and speed flow. This thoughtful approach
results in a more accurate and realistic portrayal of travel times, which can significantly improve
transportation problem optimization. Secondly, the development of an innovative deep learning model
using a comprehensive real-world GPS dataset has shown remarkable performance, achieving greater
accuracy in travel time estimation compared to existing models. This breakthrough opens the door to
creating more efficient transportation systems that can adapt to the dynamic nature of travel conditions.
In summary, this research offers valuable insights into employing advanced artificial intelligence and
data-driven strategies to predict vehicle travel times effectively. These advancements have the potential
to substantially improve transportation systems, enabling them to respond adeptly to the constantly
changing nature of road transport. The broader implications of this work include enhanced efficiency,
reduced operational costs, and a significant improvement in the quality of life within urban areas.

This research can be further extended in several important ways. In our current study, we primarily
focused on using a single route generated between each pair of nodes via the Google Direction API to
estimate travel times. However, in real-world scenarios, multiple routes exist between an origin and a
destination at different departure times, which results in varying travel durations. Therefore, vehicle
departure time could be considered as a third dimension in the model, alongside origin and destination,
for generating various routes and selecting the best one for minimum travel time in future research.
Additionally, future research would greatly benefit from incorporating more factors, including weather
data, vehicle counts over specific distances, traffic congestion and its real-time fluctuations, driving
behaviour, road construction activities, and large public gatherings into the analysis. In future work, we
could also utilize several other datasets to validate the proposed model. By integrating these various
elements, we can enhance the accuracy and realism of travel time estimations, leading to more precise
system optimizations that respond to changing road and traffic conditions. By continually advancing the
integration of artificial intelligence, data-driven methodologies, and real-time data utilization,
researchers can unlock greater potential for optimizing transportation systems and developing
sustainable and efficient logistics networks.
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